
137

Chapter 10

MULTI-AGENT WELL SCHEDULING: A
PROTOTYPE IMPLEMENTATION USING CNP
AND JADE

Jivko Hristov1, Graham Lange2, Fuhua Lin1, M. Ali Akber Dewan1, Xiaokun
Zhang1, Saadat Khan1
1School of Computing and Information Systems, Athabasca University
2Encana Corporation, Canada

Abstract: Efficient task allocation and resource scheduling have been challenging in oil

and gas industries for many years, because they are influenced by a number of

factors including resource availabilities, environment, regulations,

stakeholders, finances, and market. With the advancement of information

communication technologies (ICT), the oil and gas industries get the

opportunities to increase production and to minimize operation costs through

efficient resource management and task scheduling. This paper presents a

prototype implementation of daily well scheduling using Java Agent

Development Framework (JADE) — a multi-agent system platform.

Coordination mechanism among the agents are implemented using the

traditional Contract Net Protocol (CNP) which enables a flexible and efficient

resource allocation leading to an intelligent management of the available

resources and dynamic scheduling of the tasks across the well lifecycle. In the

prototype model, sequence diagrams and class diagrams are used to show

coordination mechanisms between different agents. Three different use cases

initially demonstrate its effectiveness of the CNP-based coordination of multi-

agent system approach to well scheduling. Future work on well scheduling in

distributed and online environment is discussed.

Key words: Multi-agent systems, well scheduling, Contract Net protocol, JADE, business

process modeling.

138 Chapter 10

1. INTRODUCTION

Well scheduling is a highly dynamic in nature and complex problem in the
oil and gas industries. Large oil and gas industries plan for their active
drilling season in advance to utilize their equipment (or available resources)
to the maximum and achieve high return on� investments. Unfortunately, the
active drilling season has limited window opportunity to complete all
business goals. The work activities of the oil and gas industries largely
depend on many internal and external factors, such availability of the
resources, weather, regulations, and health and safety inspections. These
factors are hard to manage by planners because it involves hundreds of
processes and dependency tasks which change dynamically. This dynamic
nature of the working environment warrants flexible technological solutions
that will be able to allocate tasks and schedule resources intelligently to
maximize industrial benefits.

A number of methods for well scheduling have been proposed in the last
few years. To schedule the well activities, Hasle et al. (1995) developed a
model by defining a particular well activities problem and generating a high
quality and feasible schedule that can be inspected and modified by the user
through interactive Gantt visualizers. In another work, Dimitrios et al. (2009)
proposed a mixed integer nonlinear programming model. However, these
models either require manual interaction or face challenges with the dynamic
nature of the well scheduling. One possible solution would be the multi-
agent systems, which can allow dynamic allocation of the tasks and schedule
of the resources through agent negotiations, while managing all the related
internal or external factors in a flexible manner. Multi-agent systems
technologies have been widely used in complicated systems, which play a
role in solving distributed and complex problems coordinately (Wooldridge
& Jennings, 1995). In the multi-agent systems, agents can be software
entities, computer programs or distinct objects in a larger software model
that act autonomously on behalf of their users (Weiss, 1999; He et al., 2008).
To resolve the dynamic scheduling problem we not only need agents but also
need a way of effective communication between the agents and a way to
negotiate terms and conditions to process the work.

Lange and Lin designed a system for well scheduling based on multi-
agent systems platform (Lange & Lin, 2014). This system design is capable
of negotiating among agents with agility and flexibility for a better solution
of well scheduling. A prototype design and implementation of the above
system using Java Agent Development Framework (JADE) and Contract Net
Protocol (CNP) have been detailed in this paper. More specifically, “Add a
well” among many different scenarios has been described. This scenario
adds wells to the system and establishes communication to the service

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

139

providers who can provide their bids. The tasks are assigned to the service
providers who provide earliest completion time with minimal cost proposal.
Percept sources, such as weather, roads condition, and health and safety have
been considered. Three use cases are explained within the prototype
implementation for performance analysis. The advantages of the proposed
multi-agent system in “Add a well” scenario have been identified.

2. SYSTEM ARCHITECTURE

2.1 Overview

The well scheduling is a very complex and dynamic process with various
tasks involved in commencing of a well. At a higher level, the tasks
identified by the researchers are divided into five distinct phases: Landman,
Construction, Drilling, Completion, and Facilities. The tasks are tightly
coupled and can only be executed in sequential order. For example, the
Construction task cannot be started before the Landman task is completed
for a given well, or Drilling task cannot be begun before the Construction
task is completed. The scheduling module needs to take this precedence
information into account and expect to schedule all the tasks using an
optimal plan. Each high level task is comprised of many lower level sub-
tasks which must be completed before the overall process can move forward
to the next milestone. A high level system diagram of the proposed business
process model for well scheduling is shown in Figure 1, where several actors
(or agents) are participating in the process of allocating tasks and scheduling
resources for an optimal scheduling solution. It can also be observed that
there is an actor representing each phase of the project like Landman,
Construction, Drilling, Completion, and Facilities.

The well scheduling is comprised of many different scenarios such as
“Add a well”, “Remove a well”, “Facilities Complete”, “Competition
Finished”, “Drill Completion”, “Construction Complete” “Stop Work”, etc.,
each of which has many different functionalities. In this paper, the
implementation of “Add Well” scenario with its functionalities has been
described. The system determines the order of tasks for “Add Well” scenario
as per predefined plan and the best scheduling time when the work can be
completed. The scheduling decision is made based on previous service
commitments thus the service providers will try to provide best available
services in time. However, the work can be disrupted due to many external
factors which stimulate a simple stop order. After completing the scheduling,

140 Chapter 10

the system is presented with the scheduled tasks which include the cost for
every part of the whole project.

Figure 1: System architecture for multi-agent based well scheduling (Lange & Lin, 2014)

A high level sequence diagram is shown in Figure 2, which defines the

high level message flow between agents. The process is initiated by the
Engineer agent who adds a well to the system to be scheduled. The message
is sent to the well agent who starts the negotiation process with the
scheduling agents. There are five scheduling agents one for each high level
phase – Landman, Construction, Drilling, Completion and Facilities. Each
scheduling agent communicates with its respective service providers to find
the best service offer which meets the shortest execution time utility. The
utility function implemented by any of the agents can be developed to meet
any business requirement. For this prototype the utility function will try to
find the shortest path to complete the given work. Based on the high level
system design, this paper defines the agents below with their respective
functionalities. A high level sequence diagram of agents’ interactions is
shown in Figure 2.

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

141

Figure 2: Sequence diagram of the multi-agent-based well scheduling system

2.2 Engineer Agent

This agent initiates the process of adding wells to the system to be
scheduled. In the prototype, this functionality is simulated by implementing
timer behavior which adds a new well in every 20 seconds to the maximum
of nine wells. The upper limit was put in place to study the use cases defined
in the research paper (Lange & Lin, 2014). If the limit is removed, the
system will have no upper limit and continue to add wells after every 20
seconds for scheduling. The engineer agent executes three scenarios and for
each scenario it adds three wells.

Figure 3: Class diagram for the engineer agent

The purpose of this design is to simulate the three different scheduling

options the intelligent agents can use when scheduling the tasks. This

142 Chapter 10

scenario follows the close guidelines of the design in Lange and Lin’s paper
(Lange & Lin, 2014). Messages exchange by the agents is designed with the
maximum flexibility to allow for future expansion of this application. Every
time the agent wakes up it initiates the addWellBehaviour which send
message to the well agent to add a new well to be scheduled. Class diagram
of the engineer agent is shown in Figure 3.

2.3 Well Agent

The role of this agent is to accept requests from the engineer agent when a
“Add a well” is initiated, to request for scheduling various tasks to the
scheduling agent, and to send back the overall schedule and related cost to
the engineer agent. In this design, the well agent plays the role of coordinator
of the scheduling works. The agent extends JADE agent framework and
implements several private classes to support the functionality as per well
agent class diagram as shown in Figure 4.

Figure 4: Well agent class diagram

Once the scheduling request is received from the engineer agent, the well

agent creates a sequential plan using SequentialBehaviour which defines the
order of execution of scheduling work requests to the five scheduling agents.
The sequential plan helps to control the sequence of execution of requesting

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

143

schedules from the various scheduling agents when a new well is added to
the system. Sub-behaviours are added to the plan by means of using
addSubBehaviour() method which ensures that tasks are executed in the
order they were added to the execution plan. The sequential behaviour can
be instructed to� terminate execution after the first child completes or after the
last child finishes, it all depends on the business requirements. As previously
described the order of scheduling work is sequential and the sequential
behaviour helps enforce this rule and fire scheduling requests in the
predefined order of execution (Landman, Construction, Drilling, Completion

and Facilities).���
Since the basic business requirements are that the schedules should not

be overlapped, it implies that scheduling agents must share at the very
minimum completion date with the next agent in the execution chain. Given
that the well agent plays a coordinator role the well agent receives the
schedule from every scheduling agent before it fires the request to the next
one in the execution list which is controlled by the sequential behavior. The
well agent uses the CNP to negotiate schedules with the respective
scheduling agents. When the well work is fully scheduled the well agent uses
a utility function to determine if the schedule of the works can be optimized.
The optimization decision is based on a stop work order introduced in the
schedule. The stop work order causes the well work schedule to be extended
by the duration of the stop order thus costing the company additional cost.

The well agent ensures that the schedules returned to the engineer agent
are optimal; therefore it requires the scheduling agents to re-plan the order of
execution and find optimal work schedules across different wells (see
sequence diagram in Figure 2). To support this functionality the solution
introduces two new system operations – Change and Move. This new
operations will request the scheduling agents to prioritize their work based
on new provided� start dates across the work they have already committed to.
Alternatively more sophisticated implementation of this process could use
iterated CNP which will be discussed further down this paper. The agent
implements the business logic using different plans which drive out the
decision of well scheduling.

The well agent recognizes this event by reviewing proposed schedules
before returning them to the engineer agent. When reviewing schedules the
well agent verifies schedules not only for the current well which is being
created by it goes back to the previous schedules to find potential work stop
gaps which can be utilized to optimize current and previously committed
schedules to reduce work duration. The scheduling agent will accept the
optimization request and assess the available options.

144 Chapter 10

2.4 Scheduling Agents

The application design introduces a scheduling agent for every task in the
process flow, for example one scheduling agent for Landman, another one
for Construction etc., as per the scheduling agent class diagram as shown in
Figure 5. Since the application has many scheduling agents, the design
abstracts the common Contract Net protocol framework to the abstract class
SchedulerAgent so every agent can implement the abstract methods and
reuse the common functionality of the base class.

Figure 5: Scheduling agent class diagram

The base class will call each abstract method which will be implemented

by all five scheduling agents. Each individual agent will know the services
providers and maintain internal work schedule. The scheduling agent will
support three operations like AddWell, Change and Move. The first
operation, AddWell, will support adding new well to the schedule. Before
any new work is taken on the scheduling agent executes its utility function to
find best offer it needs to meet the requested demand. This proposal is sent
to the service agent for commitment or counteroffer. As part of the contract
net negotiation protocol when the scheduling agent receives a proposal from
the servicing agent it validates all proposal to find the best offer. Each
scheduling agent can contact one to many service providers with work
request which they can bid on. When all bids are received as part of the

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

145

contract net negotiation process the scheduling agent reviews all offers and
selects the best offer, the offer that is either matching the proposed start date
or the one with shortest duration. The scheduling agent declines all offers
with the exception of the one it accepts for which it requests the service
agent to commit to it.�

The second operation Change will indicate to the scheduling agent to
consider rescheduling work for various wells based on the proposed start
dates. The agent will validate its internal committed work and decide if
optimizations are possible. If optimization is possible the agent will engage
the service provider to arrange for new commitments. The scheduling agent
always verifies the offers coming back from the service providers against
their internal records. If the service provider offer is different from the
recommended schedule which the scheduling agent provided upon
submitting the request for work messages to all agents it either can decline it
or accept the best offer. When the best offer is accepted and committed to by
the service provider the scheduling agent records it in its internal memory.
Irrespective of the operation executed the underlying negotiation protocol
used is the same. All interactions between agents when negotiation is
required use the CNP framework.

2.5 Service Agents

Figure 6: Service agent sequence diagram

This agent represents the service providers in the system. The service agents’
base class (ServiceAgent) implements all common service functionality such

146 Chapter 10

as the contract net responder and provides several abstract methods which
are implemented by the service providers. Each service provider as per
Services Class Diagram as shown in Figure 6 implements its own utility
functions and corresponding abstract methods. Services agents bid on
proposed work by the scheduling agents (see sequence diagram in Figure 2).
The service agents only implement Contract Net responder functionality
because the services only bid on work and either their bid is accepted or
rejected.

3. �����������	�
�	����������������

���	�����

This section describes the implementation details of the Contract Net
protocol in JADE framework. The implemented prototype extensively uses
the Contract Net protocol to exchange messages between agents which use
the protocol to negotiate for best solutions by optimizing their internal goals.

In CNP for agent negotiation, the process (as Figure 7 shows) starts with
contractor agent broadcasting works to service provider agents. The service
provider agents send their proposals to the contractor agent. The contractor
agent looks at all proposals and finds the best proposal that maximizes its
utility function. Once the optimal proposal is found, the contractor agent
sends accept message to the agent that provided the best offer and reject
message to the other agents. The agent that receives the accept message
needs to commit to the offer by sending a commit message to the contractor.

Figure 7: Sequence diagram of Contract Net protocol.

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

147

In the prototype implementation, the well agent is used as a coordinator
which is responsible for providing requirements from one scheduler agent to
the next aiming to achieve its goal of completing scheduled well work in the
shortest time. The scheduling agent receives its work from the well agent
with proposed start time of the work. Every scheduling agent tries to achieve
this target by requesting the service providers match the proposed timelines.
The benefit with this architecture is that the scheduling agents don’t know of
each other’s existence. They are decoupled from one another and work
independently. Another positive side for this architecture is that if additional
work or new phase is introduced in the well work schedule, it can easily be
added to the execution plan of the well agent and none of the scheduling
agents will need to be concerned with it nor there will be any changes for
those scheduling agents.

Alternatively this solution can be built with different architecture where
well agent initiates the work by broad casting it to the agents. In this model
the agents can be chained and each agent knows which other agent it can
receive work from and once completed who to pass the work to. This model
is obviously a bit more complicated and harder to manage due to fact that
agents will need to have previous knowledge about their surrounding agents
in the chain of work.

Another observation about the agent platform is that when agents fail they
stop receiving messages and become unresponsive which may be an issue if
this platform is used to implement enterprise solutions because the system
needs to be stable and reliable. This fining will require the application to be
well designed and developed to handle and deal with any unforeseen
exceptions during application execution to avoid the agent to become
unresponsive.

Scalability of the platform will need to be further assessed. The business
logic in each method of the behavior is executed only after the previous
method exits. This constraint will require very careful application design so
that behaviors are executed efficiently. The behaviors should not be
developed with blocking logic because if the business logic requires other
work to be executed while waiting it will never be executed since the
blocking behavior method will never exit to allow the scheduler to invoke
the next behavior work in the pipeline. The reason for this constrain is
because agents are designed to execute in environments will limited
resources thus this architecture definitely suites systems in that space.
However, in larger environments where this constrain is not applicable will
see this requirement as a negative constrain.

Sharing data between different behaviors is more challenging than in
regular applications. The reason for it is because behaviors are pre-

148 Chapter 10

constructed before they are executed thus information that is obtained by the
first behavior via some business functionality can’t be passed to the next
behavior in the chain of execution because it was not available when the plan
was created. The way this problem is resolved in this environment is by
either using local variables in the agent or its parents (������������ �	�
����

����. However, keeping data stored in the agents or parents variables is not
a best practice because it prevents common logic to be reused. Therefore, it
is best if data is externalized from the agents and stored in Data Store class
included in the jade framework.

JADE platform executes logic in a single thread using the concept of
behaviors. The behaviors provide several different implementations that the
developers can use to solve various business requirements. This project
utilizes several of the JADE behaviors to solve this assignment design
requirements. The sequential behavior pattern is used to execute tasks in
specific order to ensure that no one task is executed before its precedent.
Well agent is perfect example where this behavior is used. As per the
business requirements the first agent needs to receive the commitments of
the first service provider before it can provide requirements to next service
provider in the chain of execution. This pattern is heavily utilized to enforce
sequential execution of tasks. Another behavior used is one shot behavior.
This framework is used in event when specific task is required to be
executed just once. Typical use case for using it is sending a message to
another agent without requiring waiting for the response. Another interesting
functionality implemented using behavior framework is ticker behavior. It
gives the application capability to execute behaviors within preprogrammed
intervals. Very important behavior called cyclical is used to constantly listen
for arriving messages. Since the agents constantly exchange this behavior
can help implement asynchronous message exchange pattern where agent
can send a message to other agents and not necessarily wait for any response
immediately. This behavior can help implement asynchronous message
pattern exchange between agents.

4. CASE STUDIES

4.1 Use Case 1

This use case depicts the three well schedules in which there are no external
forces that impact the committed work timelines by the various parties. As
outlined each phase takes exactly the allowed time to complete before the
next phase can begin. The test case implemented confirmed Lange and Lin
(Lange & Lin, 2014) estimate that if the work is completed as per

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

149

requirements the scheduling of the three well test solution is optimal. The
work duration for this small project completes in 12 months.

Tasks Well #1 Well #1 Well #1

Land $50,000 $50,000 $50,000

Construction $100,000 $100,000 $100,000

Drill $2,000,000 $2,000,000 $2,000,000

Complete $1,000,000 $1,000,000 $1,000,000

Facilities $500,000 $500,000 $500,000

Total $3,650,000 $4,650,000 $3,650,000

 $10,950,000

 Total Time 13 months

Figure 8: Scheduling result for Case 1

4.2 Use Case 2

Use case two implementations execute the same model where three wells
will need to be scheduled. The difference here is that stop order is introduced
in the middle of the completion phase for 2 months. Naturally this will push
out the completion phase by two months resulting in delays for the overall
schedule which not only impacts well two schedule but also well three
schedule. Well three’s schedule is also delayed because the completion work
can’t commence as planned. This stop order directly impacts the optimal
schedule which results in 2 months delay. Therefore the entire duration of
this project would be equivalent to 14 months.

Tasks Well #1 Well #1 Well #1

150 Chapter 10

Land $50,000 $50,000 $50,000

Construction $100,000 $100,000 $100,000

Drill $2,000,000 $2.000,000 $2,000,000

Complete $1,000,000 $1,300,000 $1,000,000

Standby $400,000

Facilities $500,000 $500,000 $500,000

Total $3,650,000 $4,350,000 $500,000

 $11,650,000

 Total Time 17 months

�

Figure 9: Scheduling result for Case 2

��� �����	�����

In this use case the same stop order is introduced into the second well
completion phase schedule however the agents consider optimizing the
schedule when stop order is introduced in any phase of the well schedule.
The optimization reduces the duration of the project by two months helping
the agents achieve their overall goal.

Tasks Well #1 Well #2 Well #1

Land $50,000 $50,000 $50,000

Construction $100,000 $100,000 $100,000

Drill $2,000,000 $2,000,000 $2,000,000

Complete $1,000,000 $1,300,000 $1,000,000

Standby $200,000

Facilities $500,000 $500,000 $500,000

Total $3,650,000 $3,950,000 $3,650,000

 $11,450,000

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

151

 Total Time 15 months

�

�
Figure 10: Scheduling result for Case 3

5. ����
�����

Multi-agent based well scheduling approach based on the notion of virtual
enterprise in the oil and gas industry can solve a number of problems that
conventional approaches cannot solve. By implementing a multi-agent
system to well scheduling we can automate this manual effort. Multi-agent
systems approaches are well suited for a dynamic environment and by
working through the design it is evident that the approach will work. The
multi-agent approaches allows for a certain amount of flexibility and
timeliness not provided in traditional systems.

Coordination of CNP with different agents was used as the negotiation
mechanism for solving the resource and scheduling problem. This should be
a suitable approach to solving the problem of negotiating multiple resources
across the schedule. However, the limitation of the current implementation is
that it is one task version of CNP. There are weaknesses of this method: lack
of optimality. This lack of optimality is due to decisions that lead to the
myopic behavior of decision-making entities. For example, the case of a
single task in reactive scheduling, but this is actually a degenerate case of the
CNP. That is, the agents are ignorant in temporal aspect without taking into
account what the other proposals that may arrive later. The temporal aspect
comes from the fact that the bidders are aware only of the requests for bids
already received, and not of those that are on the point of arriving. An agent

152 Chapter 10

may commit it to carry out a task for which it is not really very well suited,
and therefore miss contracts that would correspond better to its true qualities
(van Parunak, 1987). Therefore, future research could include additional
negotiation approaches such as Combinational Auctions (Sandholm, 2002).

What is required to further this work is to further implement the solution
and run a large number of tests to ensure that the results are acceptable to
validate and verify the model. Since the benefits of applying multi-agent
approach to the well scheduling problem is directly proportional to the size
of the overall well program, the tests should include a test for scalability.
Tests should be conducted for 50,100, and 1000 well programs. The results
should be compared to traditional systems currently in use. These systems
include manual scheduling, Microsoft Project and Oracles Primavera. The
comparisons would further support the implementation of a multi-agent
approach in an enterprise environment. In addition to comparing the system
to scheduling and planning tools, further research into comparison to a
traditional BPM method would help to understand which is a better
application. Further research on the coordination of multiple Contract Net
protocols in a system should be conducted. This would help to determine
whether this approach is the most applicable for the well scheduling
problem.

REFERENCES

Arash Mousavi, A., Nordin, M., and Ali Othman, Z. (2011, April 19).
Ontology-driven coordination model for multiagent-based mobile
workforce brokering systems. Applied Intelligence, 36(4), 768-787.
doi:10.1007/s10489-011-0294-z

������������������
���������
������������������ ���������������������	��

���	�� �	������	!�"#�$��%���
Gerogiorgis, D., Kosmidis, V., and Pistikopoulos, E. (2009). Mixed Integer

Optimization in Well Scheduling. Encyclopedia of Optimization, pp.
2247-2270. doi:10.1007/978-0-387-74759-0_395

Hasle, G., Haut, R., Johansen, B., & Ølberg, T. (1995). Well activity
scheduling-an application of constraint reasoning. Artificial

Intelligence in the Petroleum Industry: Symbolic and Computational

Applications II, 209-228.
He, L., Liu, Y.-X., Xie , H.-l., and Zhang, Y. (2008). Job shop dynamic

scheduling model based on multi-agent," in Control and Decision
Conference, Yantai, Shandong, China. 829 - 833

Lange, G., & Lin, F. (2014). Modeling Well Scheduling as a Virtual
Enterprise With Intelligent Agents. Proceedings of IEEE

10. multi-agent well scheduling: A prototype implementation using

CNP and jade

153

Computational Science and Engineering Conference. Chengdu,
China. &'�'(�

Parunak, H. V. D. (1987). Manufacturing Experience with the Contract Net.
In Distributed Artificial Intelligence, M. Huhns (Ed.), Pitman.�

Sandholm, T. (2002). Algorithm for optimal winner determination in
combinatorial auctions. Artif. Intell. 135, 1-2, 1-54. �

Weiss, G. (1999). Multiagent Systems A Modern Approach to Distributed

Modern Approach to Artificial Intelligence. MIT Press.
Wooldridge, M., and Jennings, N. (1995). Intelligent Agents: Theory and

Practice. Knowledge Engineering Review, 10, 115-152.

ACKNOWLEDGEMENTS

Here we thank Natural Sciences and Engineering Research Council
(NSERC) of Canada and Encana Services Inc. (Canada) for its financial
support to the research project.

