
THE MATHEMATICS of TENSORS – an Introduction       
( an addendum to The General Theory of Relativity – an Introduction )                by Julie Peschke, Athabasca University 

In what follows, it is important to remember that the points or vectors associated with 2- or 3-
dimensional objects or even higher dimensional spaces may be expressed in terms of a variety of 
coordinate systems. 

When we go about our daily lives, at any particular location on the earth’s surface, we do not observe 
that the streets are moving. That is because we are moving with them at the same uniform rate of travel 
(unless, of course, there is an earthquake at our location or we are in the throes of a hurricane). A 
person in another city two hundred miles away would be seeing another grid of street patterns but still 
would not detect that that grid is also moving. However, an observer in outer space would be able to 
detect both movements from a space station, including his/her own motion in the earth’s orbit. This is 
what physicists would call three different frames of reference (or location perspectives) concerning the 
earth’s movement in the context of Einstein’s space-time continuum model. 

In the General Theory of Relativity, the laws of moving bodies from one state to another must be 
independent of the frame of reference or the perspective of the observer from the locale in which s(he) 
is positioned within a given coordinate system. This is done to avoid bias in the scientific observations 
and any ensuing errors in the mathematics which may occur by preferring one frame of reference to 
another. In other words, the transformations and dynamics of moving objects must not be dependent 
upon or associated with a particular coordinate system stamped on a particular space. In fact, different 
observers measure different distances and different times depending on their locations and velocities – 
sometimes leading to distance contraction or time dilation, however small. Remember that, even in our 
every-day world,  time  =  distance/speed is a ratio and, therefore, a relative measure. 

Moreover, now suppose that you are walking along a narrow, straight, smoothly paved, lane in a city. 
You think that you are walking along a straight path but you’re not. In fact, in terms of the surrounding 
3-dimensional ambient space, your actual path is slightly curved due to both the centrifugal and the 
coriolis forces exerted on the earth’s surface as is rotates, not to mention the change in the position of 
the earth in its orbit over that time period. In addition, depending on your precise location on the 
earth’s surface in terms of latitude and longitude, these inertial forces may differ in magnitude and 
direction. (This should remind you of a mathematical object called a “vector.”) 

These phenomena may be thought of as a 4-dimensional space-time parallax.  

In order to account for this kind of experiential parallax, tensors became the mathematical object of 
choice for the theoretical model because they can be expressed independently from the frame of 
reference and can account for movement from one locale to another. They are often considered as the 
generalization of a vector. However, they may also be conceived of as a generalization of the concept of 
a transformation on a space of vectors with an associated matrix of changes to the base vectors. The 
only stipulation is that tensors must keep the 0-vector fixed from one space to another. Essentially a 
tensor maps a flat space of some dimension into another flat space. Note that tensors of different ranks 

may be defined on vectors in an arbitrary number of dimensions,  n
 . In addition, movement in a 

space, curved or not, is calculated using vectors and derivatives in the flat spaces that approximate ( to 
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the closest possible degree) the changing locales of the moving point – namely the associated tangent 
planes to the path of motion. 

In differential geometry, an intrinsic geometric statement about a surface can be described by a tensor 
map on the tangent planes to that surface, and then doesn't need to (though in some cases may) make 
reference to coordinate systems. 

For a more intuitive perspective of what tensors are, see  Tensors Explained Intuitively: Covariant, 
Contravariant, Rank  (published on July 20, 2017 by Physics Videos by Eugene Khutoryansky).  Note that, 

in this video, all of the tensors discussed act on  vectors in the 3-dimensional space, 3
 . In the 

vernacular, it may be said that tensor components of various ranks “cover all the combinations of bases” 
much like hitters in a baseball game who actually get to first base. 

Tensor of rank 0 acting on an n-dimensional space of vectors, n
 , results in a scalar ( a number ) which 

has magnitude but NO direction. Its action associates a number with every vector in the space. 

An example of such a tensor is the one which assigns to every vector, its length which is a single 

numerical entry. In the notation below, the lower ( )x  indicates the frame of reference having an n-

dimensional 1 2 ... nx x x − coordinate system and the upper indices , 1 ,iV i n≤ ≤  represent the 

contravariant components of the vector V in that frame of reference. 
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Tensor of rank 1 acting on a 3-dimensional space of vectors results in a vector which has magnitude 
AND direction.  It associates a number  with each single basis vector (hence, rank 1) in the 3-

dimensional ambient vector space 3
  . Recall that a basis is a minimal set of vectors pointed in 

independent directions (in this case 3) such that all other vectors in the space may be expressed as 
linear combinations of the basis vectors using scalar (number) multiplication and addition. 

Example: Suppose that the tenor T  associates the numbers 1, 2, and -3, respectively, to the three basis 

vectors in any frame of 3
 .  The transformation matrix of the tenor T  on 3

  will be the (3 X 3) matrix 
1 0 0
0 2 0
0 0 3

 
 
 
 −

, noting that, in this case, the matrix entries do not represent the coordinates of the basis 

vectors – only how the tensor transforms them.  Thus the tenor T  will map a vector to its 

https://www.youtube.com/watch?v=CliW7kSxxWU
https://www.youtube.com/watch?v=CliW7kSxxWU
https://www.youtube.com/channel/UCJ0yBou72Lz9fqeMXh9mkog


coordinates/components in that frame modified by those values. The resultant vector may be 

represented as a (3 x 1) column matrix with  3 entries, which is just another vector in 3
 .  
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The multiplication above is matrix multiplication, that is the product of each matrix row by the vector 
column, entry by entry and then added together. In this case, a single column matrix can be interpreted 
as a the components of a vector in the given frame of basis vectors. 

Tensors of rank 2 determine a relationship between vectors in two different frames of reference. 
Mathematically, it may be represented as a transformation from a flat space of some given dimension 
into another flat space of the same dimension which keeps the 0-vector fixed.  

Example 1:  a tensor of rank 2 of type (1-covariant, 1-contravariant) acting on 
2

  
Tensors of rank 2 acting on a 2-dimensional space would be represented by a  2 x 2 matrix with   4 = 22 
components associated with all possible pairings in 2 dimensions, namely 11, 12, 21, 22. 
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In this case, the upper index (the contravariant part) is one of two vector components in a flat 2-
dimensional tangent plane. The lower index (the covariant part) represents one of the two basis vectors 

in the same flat 2-dimensional tangent plane. The above tensor T is a 1-covariant, 1-contravariant 

object, or a rank 2 tensor of type (1, 1) on 
2

 . 

 
Example 2:  a tensor of rank 2 of type (1-covariant, 1-contravariant) acting on 

3
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Tensors of rank 2 acting on a 3-dimensional space would be represented by a  3 x 3 matrix with 9 = 32 
components associated with possible pairings in 3 dimensions, namely  11, 12, 13, 21, 22, 23, 31, 32, 33. 
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 In this case, the upper index is one of three vector components in a flat 3-dimensional tangent plane. 
The lower index represents one of three basis vectors in the same flat 3-dimensional tangent plane. The 

above tensor T  is a 1-covariant, 1-contravariant object, or a rank 2 tensor of type (1, 1) on 
3
 . 

 
 
Example 3:  a tensor of rank 2 of type (2-covariant, 0-contravariant) which is called a covariant tensor 
of rank 2  

The components of this type of tensor, the i jT , are not expressed in terms of the individual vector 

components, only the transformations of the basis vectors (hence the nomenclature ‘covariant’ meaning 
varying in sync with the basis vectors of the space). However the matrix of tensor components 
transforms vectors in one flat space to another flat space of the same dimension. See the diagram 
below. 
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In the , 1 , 2i jT i j≤ ≤  , the two lower indices represent the tensor components for all pairs of two 

basis vectors in the tangent plane. The transformation of the components of an arbitrary vector V  is 
defined in terms of the tensor components.
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defined using matrix 

multiplication. 

 The four tensor components (matrix entries) define the change in the orientation and position of the 
tangent planes at each point as a point moves along a curve in the 2-dimensional surface embedded in 
3-dimensional Euclidean space. 

Tensors of rank 3 or greater may be defined on spaces of higher dimensions. Their representations of 
components would consists of stacks of matrices. Because Einstein’s field equations only feature tensors 
of rank 2, such higher rank tensors will not be discussed here. 

How specific rank 2 covariant tensors in Einstein’s space-time model, namely  ( , ,uv uv uvR g T ) , 

transform a space of vectors will depend on their geometric purpose and will not be discussed here. 
However, the mathematical minutia of details may be found in the following videos. 

THE MATHEMATICAL FOUNDATIONS of EINSTEIN’S FIELD EQUATIONS 

For more information on how distance along a path on a curved surface and curvature of a surface at a 
specified point on it are defined and calculated, see the following sequence of videos. 

What are Contrvariant and Covariant Components of a Vector?  (published on May 20, 2009 by 
Mathview) 
0:00 – 5:21  General discussion on the applications of differential geometry 
5:22 – end   The mathematics of contravariant and covariant components of a vector 

Vectors as Directional Derivatives   (published on March 27, 2017 by Robert Davie) 

https://www.youtube.com/watch?v=8vBfTyBPu-4&list=PL7A982273588DC568&index=1
https://www.youtube.com/watch?v=vtPiROQUMhQ


 Basis Vectors and the Metric Tensor   (published on December 22, 2016 by Robert Davie) 

Parallel Transport & Curvature  (published on February 11, 2015 by The WE-Heraeus International 
Winter School on Gravity and Light) 
This video discusses parallel transport which is a way of measuring the change in direction of an 
object on a surface as it moves around on that surface in a parallel way in the higher dimensional 
ambient space. It uses the directional derivative of a vector or the covariant derivative of a tensor 
along a closed curve on the surface. If there is no bending on the surface, there is no change in 
direction of the vector representing the object. Consequently, the notion of parallel transport can be 
used to measure the curvature of a surface in the ambient higher dimensional space.  

The Metric Tensor uvg   :  is a covariant tensor of rank 2 on a space of vectors. It provides a way to 

measure distance or length on a curved surface. It is a generalization of the Euclidean metric on flat 
space which is based on Pythagorum’s Theorem of the lengths of the sides of a right triangle. 

Recall that the Euclidean metric measures the distance squared between two points in an arbitrary n-
dimensional flat space and is derived from Pythagorum’s Theorem in a 2-dimensional plane:    

2 2 2ds dx dy= +  where ds  is the distance between the points (the length of the  hypotenuse of the 

right triangle associated with the points), d x   is the difference in the  x -coordinates  and d y  is the 
difference in the  y  coordinates of the points (the respective lengths of the sides of the triangle). 

Relativity 7a – differential geometry I  (published on December 23, 2011 by viascience) – a look at 
the mathematical framework for the General Theory of Relativity and how the metric tensor plays a 
major role in its formulation. 

Relativity 7b – differential geometry II  (0:00 – 8:17 minutes) (published on January 22, 2012 by 
viascience) – a quick overview of the metric tensor on a curved surface in an arbitrary number of 
dimensions. 

Riemannian Curvature Tensor 

Relativity 7b – differential geometry II   (8:17 – 11:28 minutes) (published on January 22, 2012 by 
viascience) – a quick overview as to how one can tell if a surface is curved, including a discussion of 
the Riemannian curvature tensor expressed in terms of the Christoffel symbols. 

Riemannian Curvature Tensor   (published on April 19, 2017 by David Butler) – includes a discussion 
on the mathematical components involved in calculating the curvature of a surface at a point on the 
surface, including the notion of a geodesic of a space (the straight line counterpart or path of 
shortest distance between two points on that surface) and the Ricci Curvature Tensor. 

The Scalar Curvature R :  sometimes called  the Ricci curvature scalar, assigns a number to every 

point on a surface embedded in flat Euclidean space, n
  , which measures the curvature of the surface 
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at that point. The curvature value is found by comparing the volume of a geodesic ball about the point 
on the surface to the volume of a corresponding ordinary ball of radius 1 in a flat Euclidean space. If 
there is no deviation in the compared values, the surface has curvature 0 at that point because flatness 
of a space implies curvature 0. 

The Ricci Curvature Tensor uvR :  is used to measure how the volume of an object (in particular, a 

small wedge of a geodesic ball) about a point on a curved surface deviates from that of the standard ball 
in flat Euclidean space. As such, it provides one way of measuring the degree to which the geometry 
determined by a given metric tensor might differ from the geometry of the ordinary flat Euclidean n-
space metric. As a tensor (that is a linear map), it is able to track the changes in curvature (including the 
various contours of a surface) as a point moves across the surface. 

Relativity 7b – differential geometry II  (11:28 – end, in minutes) (published on January 22, 2012 by 
viascience) 

Ricci Tensor and Scalar  (published on June 20, 2016 by Robert Davie) – a look at the derivation of 
both the Ricci curvature tensor and the Ricci curvature scalar using the symmetry properties of the 
Riemannian curvature tensor. 

Einstein himself, after proposing his revolutionary theory of general relativity, came to some 
startling conclusions: 

“In the General Theory of Relativity, space and time cannot be defined in such a way 
that differences of the spatial coordinates can be directly measured by the unit 
measuring-rod, or differences in the time co-ordinate by a standard clock. The method 
hitherto employed for laying co-ordinates into the space-time continuum in a definite 
manner thus breaks down ... “  
(Einstein, 1916, The Foundation of the General Theory of Relativity) 

 

The Principle of Relativity 

Relativity 8 – the yardstick of spacetime  (published on February 18, 2012 by viascience) 

The Stress Energy Momentum Tensor uvT :  an attribute of matter, radiation, and non-gravitational 

force fields, it describes how much energy and momentum a moving body has at each point on it. In 
Einstein’s mathematical model, it indicates the density of energy and momentum at each point in space 
time and dictates how space-time curves.  

Energy-momentum tensor  (published on February 24, 2017 by dXoverdteqprogress)  

The stress tensor  (published on October 16, 2014 by  Brian Storey)  
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The Cosmological Constant   Λ :  Modern field theory associates this term with the energy density of 
a vacuum. It governs the rate at which the expanding universe is accelerating and is associated with the 
notion of dark energy. Einstein introduced this constant into his field equations in order extend the 
forces of gravity to ‘push,’ thus leading to acceleration and repulsion from other objects, not just ‘pull’ 
generating an attraction towards an object. 

The Universal Gravitational Constant  G :  is the constant appearing in Newton’s Law of Gravitation. 
It is related to the gravitational force of attraction between two bodies and is equal to  
6.67408313131 x 10-11 N m2/kg2 , where N is measured in units of newton force. This constant is 
not the same as the constant gravity  g  which denotes the acceleration due to gravity. 

The Universal Constant c  : the speed of light in a vacuum equal to 299,792,458 meters/second. This 
is the fastest any object can move in our cosmos.    

Implications of General Relativity 

Relativity 10a – uniform gravity / acceleration I   (published on May 15, 2012 by viascience) 

Relativity 10b – uniform gravity / acceleration II   (published on June 7, 2012 by viascience) 

Relativity 11a – spherical bodies and black holes I   (published on July 16, 2012 by viascience) 

Relativity 11b – spherical bodies and black holes II  (published on March 14, 2013 by viascience) 

Relativity 11c – spherical bodies and black holes III  (published on January 18, 2016 by viascience) 

Relativity 11d – spherical bodies and black holes IV  (published on April 25, 2016 by viascience) 

Relativity 11e – spherical bodies and black holes V  (published on April 26, 2016 by viascience) 

Relativity 11f – spherical bodies and black holes VI  (published on December 12, 2016 by 
viascience) 

 
Einstein’s Field Equations – for beginners   (published on June 22, 2013 by DrPhysicsA) 
0:00 – 14:45  The general theory illustrated 
14:48 – end   The mathematics behind the theory, drawing on the discipline of what is now 

called Differential Geometry. The derivation of the tensors , ,uv uv uvg R T  is discussed. 
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