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If my boss ever finds 
out I’m running his 

plant with fuzzy 
control, I’m in real 

trouble!
Unidentified Plant Engineer, 
Early 1980s
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“I can’t let the 
man continue with 

fuzzy math.”

Governor George W. Bush

First Bush/Gore Presidential 
Debate

October 3, 2000
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What does 
“fuzzy” mean?
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Fuzzy sets and fuzzy logic 
were introduced by Lotfi A.
Zadeh in 1965.  Zadeh was 
almost single-handedly 
responsible for the early 
development in this field.

Seminal References

1. L.A. Zadeh, “Fuzzy sets”, Inf. Control 8, 338-353, 1965. 

2. L.A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy 
Sets and Systems 1, 3-28, 1978.



CEI Inc.

What is a fuzzy set?

A fuzzy set is a collection of objects  
with graded membership.

Graded Membership?
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Two Examples of “Sets”
1. All employees of XYZ who are over 1.8 m in 

height.

2. All employees of XYZ who are tall.

The first example is a classical set  -- we have 
a universe (all XYZ employees) and a 
membership rule that divides the universe into 
members (those over  1.8 m) and 
nonmembers.
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The second example is a fuzzy set  --
some employees are definitely in the set 
and some are definitely not in the set, but 
some are “borderline”.

This distinctions between the “ins”, the 
“outs”, and the “borderlines” is made 
more exact by the membership function, 
µA(x).



CEI Inc.

µA(x)

If we return to our second example and let A 
represent the fuzzy set of all tall employees 
and x represent a member of the universe X 
(i.e. all employees), what would the function 
µA(x) look like?
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µA(x), continued

µA(x)  =  1 if x is definitely tall

µA(x)  =  0 if x is definitely not tall

0  < µA(x)  < 1 for borderline cases
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A possible form for µA(x):

1

µA

0

x1.0 1.5 2.0
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i.e. anyone over 2.0 m is definitely 
tall,

anyone under 1.75 m is definitely 
not tall 

anyone between 1.75 m and 2.0 m 
is partly tall and partly not tall
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More on fuzzy sets
1. The support of A:

supp(A) = {x ∈ X | µA(x) > 0}

For our example, supp(A) = (1.75, ∞)

2. The crossover point(s) of A are

{x ∈ X | µA(x) = 0.5}

For our example, there is only one crossover 
point at x = 1.875
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More on fuzzy sets, continued
3. The height of A:

hgt(A) =  sup µA(x) 

In our example, hgt(A) = 1

4.  A is normalized if hgt(A) = 1.  In our   
example, A is normalized.

x∈X
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More on fuzzy sets, continued

5. The union of two fuzzy sets A and B (both 
contained in X):

µA∪B(x) = max(µA(x) , µB(x) )

6. The intersection of two fuzzy sets A and B 
(both contained in X):

µA∩B(x) = min(µA(x) , µB(x) )
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Example 3:  Intersection and 
Union of Fuzzy Sets

Individual

1

2

3

4

Handedness

ambidextrous

right-handed

right-handed

left-handed

Height (m)

1.6

1.9

2.1

1.7



CEI Inc.

Example 3:  Intersection and 
Union of Fuzzy Sets, cont’d

Here

X = set of all four individuals

A = all members of X who are tall

B = all members of X who are left-handed
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Example 3:  Intersection and 
Union of Fuzzy Sets, cont’d, 2

µA(x)

0

0.6

1

0

µB(x)

0.5

0

0

1

Individual

1

2

3

4

Note:  both A and B are normalized
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Example 3:  Intersection and 
Union of Fuzzy Sets, cont’d, 3

A ∪ B is the fuzzy set of X members that 
are tall or left-handed

Individual

1

2

3

4

µA(x)

0

0.6

1

0

µA∪B(x)

0.5

0.6

1

1

µB(x)

0.5

0

0

1
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Example 3:  Intersection and 
Union of Fuzzy Sets, cont’d, 4
Therefore, all four individuals have some 
degree of membership in A ∪ B, and two are 
definitely inside A ∪ B

A ∩ B is the fuzzy set of X members that 
are tall and left-handed.
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Example 3:  Intersection and 
Union of Fuzzy Sets, cont’d, 5

Individual

1

2

3

4

µA

0

0.6

1

0

µB

0.5

0

0

1

µA∩B

0

0

0

0

Therefore, the intersection of A and B is empty.
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Fuzzy Functions

• 1.  Ordinary function operating on 
the elements of a fuzzy set:

e.g. the function f(x) = x2 maps the 
fuzzy set A (numbers around 3) to 
the fuzzy set B (numbers around 9).
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1

2.8 3.0 3.2 x
0

µA

µB

9 y8 10

1.0

.

.>

µA(2.9) = 0.5          
= µB(f(2.9))   
= µB(8.4) 

f : A → B

f (x) = x2
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Fuzzy Functions, continued

• 2.  Fuzzifying function, operating on 
elements of a classical set.

e.g. if φ(x) = xa (where a is a fuzzy 
parameter near 2) operates on a single value  
of x (say x = 3), the image is a fuzzy set B 
(numbers around 9). φ(x) can also be 
viewed as a fuzzy set of functions.
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.

.

.

>

<

µA(2.04) = 0.6        
= µB(φ(2.04))
= µB(9.40) 

1.9 2.12.0

3

µA

µB

108 9
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Fuzzy Arithmetic

It is possible to extend the ordinary binary 
operations of arithmetic (addition, subtraction, 
multiplication and division) to fuzzy sets, as 
long as these operations are defined for the 
elements of the fuzzy sets.

We define A + B and A ∗ B as follows:
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A + B is the set of all possible sums x + y with x 
from A and y from B.  The membership function 
for an element z of A + B is the maximum (over 
all (x,y) pairs that give x + y = z) of the minima 
of the membership functions of x and y.

A ∗ B is the set of all possible products x ∗ y 
with x from A and y from B.  The membership 
function for an element z of A ∗ B is the 
maximum (over all (x,y) pairs that give x ∗ y = z) 
of the minima of the membership functions of x 
and y.
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These definitions should be much 
clearer with some examples.  

Examples for A (a fuzzy set of numbers 
near 3) and B (a fuzzy set of numbers 
near 2) follow.
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3 2

11

5

Example, some points mapping onto 4

x      y       µA  µB minimum

2      2        0        1             0                

2.5   1.5    0.5     0.5           0.5      

3        1       1        0             0

.

A + B

2 4 1 3

µBµA

1

µA+B

Clearly, the maximum of the 
minima is 0.5, which is plotted as µ.

3 7
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A ∗ B1 1

2

µA

3

.
72 12

6

1

2 4 1 3

Example, some points mapping onto 8

x       y       µA  µB minimum

4       2        0         1            0                

3.2    2.5     0.8      0.5         0.5      

3.37   2.37   0.63   0.63       0.63

µA

µA∗B
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Fuzzy Arithmetic, continued

Subtraction and division are defined as the 
obvious extensions to addition and 
multiplication, respectively.  Of course, division 
will not be defined if zero is an element with 
non-zero membership function of the fuzzy set 
that is being used as the divisor.
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Some “Fuzzy”
Applications
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Fuzzy Sets and 
Significant Figures

One straightforward application of fuzzy sets is the 
re-examination of the idea of “significant figures”.  
From a fuzzy viewpoint,

x = 3.5 means x is an element of a fuzzy 
set whose membership function is 1
between 3.45 and 3.55 and 0 elsewhere. 

y = 3.49 means y is an element of another 
fuzzy set whose membership function is 1 
between 3.485 and 3.495 and 0 elsewhere.
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Significant Figures, continued
To see how this formulation would be useful, consider 
the equation

z = exp (-(x+y))

where x = 1.00 and y = 2.5. The membership functions 
for x and y are then given by

µx = 1 for x ∈ [0.995, 1.005],                
= 0 elsewhere      and

µy  = 1 for y ∈ [2.45, 2.55],             
= 0 elsewhere.



CEI Inc.

Significant Figures, continued (2)
Then,

µx+y  = 1 for x ∈ [3.440, 3.555],                
= 0 elsewhere      and

µz = 1 for x ∈ [0.02858, 0.03206],                
= 0 elsewhere      

Returning to the normal world of significant figures, we 
would say that z has between 1 and 2 significant figures 
(i.e. the precision is somewhere between z = 0.03 and        
z = 0.030).
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Significant Figures, continued (3)
Note that because the original membership function 
values are either 0 or 1, the evaluation of the 
maximum of a series of minima for the resultant 
membership function is much easier.
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Fuzzy 
Control
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State Space Representations in 
a Fuzzy World

It is possible to consider systems such as the 
FDDLDS*

xt+1 = A xt + B ut

yt+1 = C xt+1

and its continuous counterpart, the FDSLDS**

= A x  +  B u

y  =  C x

dx dt/ * Finite dimensional discrete 
linear dynamical system

**  Finite dimensional smooth 
linear dynamical system
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with x and u representing fuzzy vectors of 
states and controls and show that these 
representations are possible.  In addition, a 
fuzzy Kalman filter for each system can be 
derived under a fairly modest set of 
assumptions.  However, control systems in 
the fuzzy world are often much less 
mathematically sophisticated. 
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Early Fuzzy Control Systems

The first system controlled 
by fuzzy logic was a small 
steam engine;  the 
algorithm was due to 
Mamdani and Assilian at 
the University of London in 
1974*.   

E.H. Mamdani

* E. H. Mamdani, “Application of fuzzy algorithms for control of simple 
dynamic plant”,  Proc. Inst. Elec. Eng., 121 1585-1588 (1974).
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Early Fuzzy Control Systems, continued

A much larger scale system was the first commercial 
application of fuzzy control  -- Holmblad and 
Østergaard were able to use a fuzzy control scheme to 
run a cement kiln** in Denmark in the 1970s.

** P. Holmblad and J.-J. Østergaard, “Control of a Cement Kiln by Fuzzy 
Logic”, pp. 398-399  in M. M. Gupta and E. Sanchez, eds. “Fuzzy 
Information and Decision Processes, North-Holland, Amsterdam (1982).
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Early Fuzzy Control Systems, continued

Both of these control schemes were significantly 
better than conventional automatic control 
systems.  In addition, neither required a detailed 
mathematical model of the process, relying 
instead on simple “rules-of-thumb” for when and 
how the process should be adjusted.

Let us examine two very simple fuzzy control 
systems.
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Simple Example:  Optimal Water 
Addition in Oil Sand Extraction
One of the control variables in the slurrying step of 
the extraction process for producing bitumen from 
oil sand is the amount of water added.  Batch tests 
indicate that if bitumen/aluminum in the oil sand is 
in the range of 5 to 8, “normal” amounts of slurry 
water are best.  Higher Bit/Al assays suggest “less 
than normal” amounts of slurry water would be 
optimal;  Bit/Al assays below 5 suggest “more than 
normal” slurry water be used.
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Optimal Water Addition in Oil 
Sand Extraction, continued

Let A be the fuzzy set of “low” Bit/Al values, 
B be the fuzzy set of “normal” Bit/Al values 
and C be the fuzzy set of “high” Bit/Al values.  
We can also interpret membership in B as 
calling for “normal” amounts of slurry water, 
membership in A as calling for “high” amounts 
of slurry water, and  membership in C as 
calling for “low” amounts of slurry water.
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Membership Functions for A, B and C

1.0
µBµA µC

µ
0.5

7 113
Bit/Al
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Control Rules
Bit/Al Slurry Water

low (A) high

normal (B) normal

high (C) low

Ties (situations in which there is equal 
membership function values in two fuzzy 
sets) go to “normal”.
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Applying the Control Rules
For example, if Bit/Al = 4.25, reference to the 
membership function plot gives µA = 0.75, µB = 
0.25 and µC = 0.  Thus the oil sand is best 
described as belonging to A and should have 
higher than normal slurry water.

Another oil sand with Bit/Al = 8.5 gives µA = 0, 
µB = 0.5 and µC = 0.5.  Invoking the tie-breaking 
rule suggests that normal amounts of slurry water 
be used.
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Advantages of Fuzzy Control 
Scheme

The advantages of this fuzzy control scheme are 
that it is simple and “scale free” (the operator of 
the large scale process is free to set his own 
“normal”, “lower” and “higher” values for slurry 
water).

The same result could have been obtained 
without using fuzzy sets, but fuzzy sets give a 
more natural formulation.
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Some tuning of the control scheme is 
possible by adjusting the membership 
functions or by introducing more fuzzy sets 
to span the range in Bit/Al values.
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A Control Scheme Based on Two 
Observations

A car is being driven through the mountains. 
How do we operate the gas pedal to maintain 
speeds at around 80 km/h (the speed limit)?

We will observe both the instantaneous speed 
and whether the car is accelerating, decelerating 
or keeping a constant speed.
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Control Rules
Speed

high, rising      
high, constant   
high, dropping 
medium,rising 

medium, constant 
medium, dropping 

low, rising            
low, constant        
low, dropping

Action
decelerate      
decelerate        
no action         
decelerate         
no action       
accelerate         
no action     
accelerate  
accelerate
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Let

A = fuzzy set of low speeds

B = fuzzy set of medium speeds

C = fuzzy set of high speeds



CEI Inc.

Membership Functions for Speeds

1.0

0.5

0

µA(x)
µB(x)

µC(x)
µ

80 10060 x, km/h
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Further, let

D = fuzzy set of speed losses

E = fuzzy set of constant speeds

F = fuzzy set of speed gains

Note:  these speed changes are all over the 
interval between successive observations
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Membership Functions for Speed Changes

1.0

- 10 + 100
y, speed change, km/h

µB(y)
µA(y) µC(y)µ

0.5

0
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How to Use the Control Chart 
and the Membership Functions
For a given (x, y) pair, find µ∗(x, y) for

A ∩ D    A ∩ E    A ∩ F

B ∩ D    B ∩ E    B ∩ F

C ∩ D    C ∩ E    C ∩ F

∗ =

Determine which of these intersections gives 
the highest value for µ, then implement the 
decision indicated by the intersection,
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Example
For example, let (x, y) = (90, -5).  Then µA(x) = 0, 
µB(x) = 0, µC(x) = 0.33, µD(y) = 0, µE(y) = 0.33, 
and µF(y) = 0.

Using the rules for intersection described 
earlier, 

µA ∩ D = 0      µA ∩ E = 0      µA ∩ F = 0

µB ∩ D = 0      µB ∩ E = 0      µA ∩ F = 0

µC ∩ D = 0      µC ∩ E = 0.33  µC ∩ F = 0 
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Therefore,

max µ*(x, y)  =  µC ∩ E

=  0.33

and the speed is best described as high and 
constant.  Referring back to the control chart, 
we should decelerate.

∗
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Notes:
1. We will need a rule for breaking ties  -- the 

best option is to have a tie result in the normal 
(i.e. no action) state.

2. Note that the membership functions were 
constructed to overlap  -- this is a necessity 
(Discussion:  why is this necessary?).
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3. Some tuning of the control system is possible 
by changing the membership function.  If 
needed, the system could be re-constructed 
using more fuzzy sets to span the possible 
speeds and speed changes.

4. The control chart is obviously just a 
collection of “rules-of-thumb” from an 
experienced operator.  Changing these into 
membership functions and control actions is 
the essence of a fuzzy control scheme.
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Translating English into 
Membership Functions

In both of the control examples, once we had 
membership functions for the variables of 
interest the process became almost automatic.  
Is there any general guidance on translating 
English into membership functions?

Dubois and Prade* give the straightforward 
example of the set

* Didier Dubois and Henri Prade, “Fuzzy Sets and Systems:  Theory and 
Applications”, Academic, New York, 1980.  -- page 257.
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Translating English into Membership 
Functions, 2

{true, more or less true, borderline, more or less 
false, false} mapping onto the set of membership 
function values { 1, 0.75, 0.5, 0.25, 0 }.

Didier Dubois Henri Prade
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Translating English into Membership 
Functions, 3

A more detailed mapping 
between English and 
membership functions is 
possible using, for example, 
the studies of Simpson in 
1944* and Hakel in 1968**.

Milton D. Hakel

*Ray Simpson, “The Specific Meanings of Certain Terms Indicating Differing 
Degrees of Frequency”, The Quarterly Journal of Speech, 30, 1944, pp 328-330.

** Milton D. Hakel, “How Often is Often?”, American Psychologist, 23, 1968, pp 
533-534.
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Ray Simpson asked 355 high school and 
college students to place 20 frequency 
terms like “often” on a scale between 0 
and 100.  How many times out of 100 was 
“often”?  Milton Hakel repeated the 
experiment in 1968.  A sampling of the 
results from the two studies follows:
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Word

always   
very often 
usually   
often         
…
sometimes 
occasionally 
not often   
usually not 
seldom    
rarely     
never

1944 Median Score 1968 Median Score

99  
88  
85  
78   
…
20 
20  
13  
10  
10  
5    
0

100 
87 
79  
74  
…
29  
28  
16  
16  
9    
5    
0
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Using either of these scales (or their average 
median scores) and dividing by 100 gives a 
mapping between these subjective terms and 
membership in the fuzzy set “ALWAYS”.

Similar surveys can put other descriptive terms 
on a quantitative scale.  For instance, we are 
interested in learning how many trials would be 
successful (out of 100) if the likelihood of 
success was described by the words
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Probable

Very probable

Likely 

Certain

Improbable

Possible

Impossible
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Expert
Systems
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Expert Systems
Many tasks in industry are performed by highly 
skilled workers with years of experience.  Some of 
these jobs are difficult to describe with equations, 
but the worker uses rules-of-thumb and his 
experience to complete the task.  An expert system
tries to capture the worker’s knowledge in a way that 
can be programmed as an automatic control scheme 
on a computer.  The most natural way to do this is to 
use the skilled operator’s “rules-of-thumb” to write 
fuzzy control algorithms.
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Expert Systems, continued

If we are constructing a fuzzy control scheme from 
the verbal instructions of an experienced operator, 
we will need to turn his English into membership 
functions.  It is better to survey to learn how to 
quantify his English after we know what terms are 
most crucial to quantify.  Our example of adjusting 
the water to optimize oil sand extraction is a very 
simple example of an expert system
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Possibility 
Theory
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Probability vs Possibility

Zadeh* observed that, if the membership 
function denoted the possible occurrence of 
an event or outcome, then the membership 
function could be viewed as a generalization 
of classical probability.  This generalization 
was termed “possibility” by Zadeh.

L.A. Zadeh, “Fuzzy sets as a basis for a theory of possibility”, Fuzzy 
Sets and Systems 1, 3-28, 1978.
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Bart Kosko was able to show* 
that classical probability theory is 
a special case of “fuzziness”.  
Kosko used a slightly different 
formulation for fuzzy sets in 
which the membership function is 
replaced by the extent to which 
one set can be considered a subset 
of another set.

* Bart Kosko, “Neural Networks and Fuzzy Systems”, Prentice Hall, 
Englewood Cliffs, NJ, 1991.
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Possibility Example  -- POMEL
A straightforward example in which we use the 
membership function in a manner similar to a 
cumulative probability distribution is POMEL 
analysis (Possibility Model for Environmental 
Liability)*,**.  This model is used for estimating 
the liability for environmental damage from a 
portfolio of many different sites.

*Peter J. Crickmore, “Multi-site Environmental Liability Analysis -- An 
Introduction to POMEL Technology”, Calgary, 1993.

**Peter J. Crickmore, ”Putting a Dollar Figure on Environmental Risk”, Calgary 
Environmental Conference, 1996. 
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Possibility Example  -- POMEL, 2

Complicating the analysis is that different levels of 
knowledge are possessed about the sites and each 
site may be subject to different environmental 
contaminants.  For example, a vacant site that may 
possess some degree of contamination by gasoline 
(which is volatile) but which has not undergone an 
intrusive environmental assessment may have its 
environmental risk represented by the following 
membership function:
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Possibility Example  -- POMEL, 3

1.0

µA

50 k0
x
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Possibility Example  -- POMEL, 4
The membership function should be interpreted 
as saying that there is some possibility that the 
site is entirely clean and the cost of remediation 
is zero and there is some possibility that the site 
is thoroughly contaminated with the need for 
$50,000 to be spent on a soil vapour extraction 
remediation of the site.  All other possibilities for 
contamination extent and remediation costs 
between these endpoints are equally possible.
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Possibility Example  -- POMEL, 5
Another site of similar size has had a more 
thorough environmental assessment and some 
gasoline contamination on one quarter of the site 
was found while the other three quarters were 
clean.  The membership function to describe this 
situation follows:
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Possibility Example  -- POMEL, 6

1.0

µB

0
x 25 k4 k
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Possibility Example  -- POMEL, 7
Note that because there has been some evidence of 
contamination, there is no longer a possibility of a 
zero cost for remediation;  the $4,000 value at µ = 0 
reflects the lowest installed cost of a soil vapour 
extraction system.  Similarly, there is no longer a 
possibility of a $50,000 remediation cost as three 
quarters of the site has been determined to be clean;  
the $25,000 figure represents a scaling of the $50,000 
cost to an area of ¼ the size (cost scales as the square 
root of the area contaminated).
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Possibility Example  -- POMEL, 8

To consider the environmental risk posed by the 
“portfolio” of the two sites discussed above, we 
would simply add the two fuzzy sets, using the 
addition rules discussed earlier.  The membership 
function of the resulting sum follows:
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Possibility Example  -- POMEL, 9

1.0

µC

0
z 75 k4 k
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Possibility Example  -- POMEL, 10

We can then start to use the membership function 
for our “portfolio” to predict likely cleanup costs 
(to use for the creation of a contingency fund, for 
example).  If we discard the upper and lower 
quartiles for our portfolio (equivalent to 
discarding all z values giving a µ value below 
0.25 or above 0.75), we can say that the likely 
cost will be in the range of $21,700 to $57,300.
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Possibility Example  -- POMEL, 11

A portfolio of a hundred or a thousand sites is built up 
by adding in sites, one at a time.  

Any sites where the information changes (either when 
a more involved environmental assessment is carried 
out or when a change in environmental status occurs 
due to a spill or leak on the site) will change the 
membership function of the portfolio.  This is easily 
done by subtracting the old membership function of 
the site from that of the portfolio and then adding the 
new membership function for the site back in.



CEI Inc.

Other Fuzzy Applications for 
Environmental Concerns

Sorting Out Complex Interactions
In a heavily industrialized area, the industries 
(past and present) and possible contaminants 
(past and present) form very complex semi-
overlapping relationships.  To trace a single 
contaminant back to a source demands tools 
from fuzzy logic*.
*P.J. Crickmore and J.M. Severyn, "Relationships between Industries and 
Contaminants: Comparisons between Generalized Inverses and Fuzzy Intersections 
for Filtering Industry/Contaminant Databases", 75th Canadian Chemical Conference, 
Edmonton, June 1992.



CEI Inc.

Other Fuzzy Applications for 
Environmental Concerns, 2

In an environmental investigation you may have 
soil analyses, groundwater analyses, soil vapour 
analyses and sensory observations.  Putting these 
together to describe a contaminant plume is easier 
with fuzzy logic.

*P.J. Crickmore, B.D. Buoy and W. Goulet, "Interpretation of Piezometer Data:  The 
Use of Fuzzy Sets to Interpret Hydrocarbon Contaminant Plumes", 41st CSChE 
Conference, Vancouver, October, 1991.

**P.J. Crickmore and J.M. Severyn, "Use of Fuzzy Set Theory to Reconcile 
Different Measures of Petroleum Contamination",  AIChE Spring National Meeting, 
Houston, March 1993
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After applying fuzzy 
logic, you will feel 
much less fuzzy.


