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Topics Covered

Introduction. - |
Full 2 Level Factorlal DeS|gns

Fractlonal 2 Level Factorlal DeS|gns (Generators Resolutlon
and Plackett Burman Designs)

Varlances Slgnlflcance and Error Bounds

Résponse Surface Desighs (Full 3 Level; Box Behnkén, and
Central Composite Designs)

Mixtures and‘Scheffé Designs

Sequential Designs, Evolutionary Operation, and the
Simplex Method
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What is Expefimental Design?

. De's'igning experiments to yield'the most
Information from the fewest runs

e Isn’t this obvious? Shouldn’t most peopl'e
‘Wwith a science or engineering background
know this stuff intuitively?
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History

. Agrlcultural field trlal work of Flsher* In
the 1920s

e _Chemical industry.work of George Box,
starting in 1951 with the publication of hIS
work term notes from ICI** " |

*R.A. Fisher, "Studigs in Crop Variation. Il. The Manurial:Response of Different Potato
Varieties”, J. Agricultural Sci., 13, 311-320(1923)

** G.E.P. Box and K.B. Wilson, ”On the experimental attainment of optimal conditions”, J.
Roy. Statist. Soc., B13,1-45:(1951)
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Ronald A. Fisher
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+George E.P. Box. -
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N-space.arnd Real Space” +

* Itis often useful to move back and forth
between sampling for a spatial function of
x and y (or, of x, y and z) and testing a
function of several other independent
variables (temperature, pressure,
'concentratlon of reactants etc. )
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Two Basic Types of Design
» One that identifies influential variables or
the “effects” different variables have ..
e One that determines a'pproxima'te functional

form of a relationship or the.“response:
surface”

‘CEl Inc.



Two Level Factorial Desighs

* |f we are to determine which variables
influence a result, usually use a two level
factorial design

* For example, determine if temperature and

pressure influence the specific volume of
ammonia -- will look at P and T at “high”

and ‘“low™ levels
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Specific 'Volume of Ammonia"
o Four runs are needed to get aII comblnatlons
of “high”“and “low” .

* Usual to use coded independent variables.

& i X =2 (X * Xav)/(xhigh_; Xiow)
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Coding

* For example, if the temperature ranges from
AU P C 100340 °C: - Aa
~ (T 2 AOBCaT = f
“Af T =1208C, T.=+3
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Experimental Runs

Order_ T, O-C P, kPa' L5 saans 'PCOOled V mi/kg
i3 [ soqy 1 iR
A T0he R e e
4 340 7| 50841 1 Sgk 1142040
13 P b-51405% $1000 % 715, [aort~L.] DH9
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Effect of T22° P22 -

In-2 level factorial designs, the
squared terms are always equal
to 1. | | |
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Empirical Models

. It is often preferable to fit to some sort of |
empirical'model

*_lt can be shown that the most general..-
polynomial model that can be estimated
from a full 2 level factorial design in two
factors Is -

DY E By P IX By Xt Bin XX,
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Our-data can be written out as

By 7By -PBa Py, =029
P gt g ped iy
Big+ By FBis - B, 1=20.40
gt By tBs + P4, 560.19

1.e. four equations in four unknowns, so there:
should-be a solutien.

CEl Inc.



The solution IS easter if we use matrices
(really).

y=Xp
Note that this Is
- - - 'not really least
Xt V= XEX E squares estimation
- - as there is no
redundancy.

B.= (Xt X)Xy,

CEl Inc.
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Three Independent Variables

. Our example could be the partlal OX|dat|on
of o-xylene .
= X could-be coded temperature:

— X, could be coded partlal pressure of oxygen |n
the feed-to the reactor | |

— X5°could be the coded presence or absence of
~* bismuth molybdate catalyst ©
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In two-level factorial designs,-can incorporate Boolean variables

I:e; X5 = -1 If no.catalyst used
= +1 If catalyst used.
With three variables, the most general polynomial model that

can be generated from a full 2 level factorial design is

Y = Bt BiXy + BoXo + Bsxs + B1oX Xy + B13X1X3 * stxzxs
B1o3X1XoX3 ' ' '

Note: there arestill no squared terms.
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- Exetcise (left to student)”

Show that, for a full 2 level design'in three.variables, the .

(Xt X‘)'l matrix is:

1180 < 9900707 0 QY
0i/8: 0 0450 0.0 04

05700 eq s 75 0 1/8
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Fractional Factorial Designs:

. 'The_ word “fu_ll” has been used a lot here. |
Are there 2 level designs that are not “full”?

* Consider the 3 variable design.above. In a
full design, 2° or 8 runs are needed. What
1f we can.only do 4 runs --is there an.-
Intelligent way to choose the runs?
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(poor Choice)

VWe could just take the first 4 runs (where X; Is always -1),
but then x, doesn’t vary. Can we pick the 4 runs sothat.all of

the X; terms vary? -

(good choice)
£ X X3
1 1 1 Note: ‘each X; varies and
i ¢ no columns are identical
-1 1 -1
1 -1 -1
1 14 1
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However, you can confirm that -/

Xy % X5 Ko

X=X “These are termed
“confounding”
X35 X Xy relationships.

and X; X, X3'=1

Thus, the 8 parameter model cannot be determined by' this
data.(we should have known that you can’t.estimate 8
parameters.with 4 runs).
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Often, make the assumption that interaction. effects are negligible
(relative to linear effects)..-Then, fit a simpler model-to the data:

Y. = Po F PiXpt BoXo + B3 Xg

but recognize that; for example, B,X, really represents 3,x, +
B13X1X3,'and so on.

How did I.come up with this subset.of 8 runs that ensured that
the-linear effects wouldn’t be:confounded:with each other?
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'Generators

e | used the 'relationship 1= xllxzx3 (1.e. the
three way:Interaction term is-set to the

constant, or B, and ﬁ123x1x2x3 will be
Indistinguishable). |

e Multiply the equation above by Xx;:
X = Kyt KX
‘But x,> =1 in a 2/level factorial design, so
By, 2
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Similarlys
Xo = Xq X3

X3.= X1 Xy

Exercise (left:to students)

Show that X;X5X; = -1 picks out the other four runs in the
full 23 design.
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- Resolution

. In our 4 run subset of the 23 de3|gn (termed
a 23! fractional factorial design),

— zero order terms (the constant) were
confounded with third order terms

— first order terms were confounded with second
order terms

» Note that the sum of the orders.of the
confounded: terms is three

CEl Inc.



Our 4 run subset of the 22 design is then
termed-to have “resolution HI1” and Is
denoted as a : :

2L design

The higher the resolution, the better.. If we took
our ‘‘poor choice” subset where X = -1; that
would be resolution .- :
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-Plackett Burman Designs

. In general terms fractlonal 2 Ievel factorlal
designs are used to'screen a large number of
possibly influential variables to see If they
truly influence the response. We usually
assume that the effects of second order and
higher terms (interactions) are much less
‘than those of the constant and linear terms.
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-Plackett Burman Designs

. 'The_ most éffi_cientbf these “'s'cre_ening”' |
designs iIs due to Plackett and Burman™ .

e _12 runs can test up.to 11 independent...
variables (other PB designs have. 20, 24, 28
and so on‘for the number of runs)

* R.L Plackett and J.P. Burman, “The Design of Optimal Multifactorial
Experiments”, Biometrika, 33, 305325; (1946)
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-Plackett Burman Designs

. The Plackett Burman de5|gns are based on
certain properties of Hadamard matrices

° All PB designs are of_r_esolution 111

* PB designs are sometimes termed
“saturated™. -

‘CEl Inc.
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Plackett Burman

~ designto test 11

variablesiin 12
runs: '



Significance, Variances.and Errer

Bounds

. The fitted models we have discussed ut|I|ze
all of the experimental data to generate
coefficients -- there are no “degrees of
freedom?” left to estimate variances

o 1f there is‘an mdependent estimate of the
“pure error variance” (call it s) and if it can
‘be assumed that this does not vary across
the domain of interest, then ' |
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Note

Although the V( ) netation suggests that we
are talking about variances, it should be
obvious.that we are only talking about
estimates of variances. If we.wish to find
confidence Intervals for the true variances,
we will need to use the i test; confidence
Intervals for the true values of the 3

parameters or the predicted y values will
require a t-test: |

CEl Inc.



Note to the Note

If the confidence interval for one of the 3
terms includes zero, the data are telling-us
that that particular combination of variables
IS ‘not influencing the result (or If it does:
haveran influence, the influence:is less that
the effects of the uncontrollable variables
(1.e. “the noise”)). The parameter and the
corresponding.combination of variables
should be omitted from the-madel.
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- Aside on Nomenclature

If the prediction variance (V(y)) isonly.a-
function of the distance from the centre of
-the design (and not otherwise a function of
position), we say that the design Is
rotatable; It can be shown that this leads to
_robust estimation of the response surface.

‘CEl Inc.



Response Surface Designs -

. Once we have determlned WhICh varlables
influence a response, we would like to
quantify “how much” or determine a -
maximum or mlnlmum over the domaln
under study

* 1. If we have a really good idea of the
functional relationship between dependent
and independent variables, use a “parameter

‘CEl Inc.



estimation design”. Briefly, test in areas-of the
domain where a-small change in the parameters
will yield a large change In the response. \We
will:not deal further withthis here,

2. If we do not.know the functional form of
the relatlonshlp we may proceed by assuming
an empirical relationship. The simplest.
functional form that will allow for local
maxima and minima Is the general quadratic:

CEl Inc.



1var|ab|e y: BO + B1X1+ Bl‘lxlé

g _"' Bzzxz

3 Va“ables Vi ﬁo + lel + Bzxz + Bsxs + B12X1X2 R
: -BlBXlXB < B23X2X3 7 B11X1 it Bzzxz s Bssxs &

andsoon:
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We cannot use 2 level factorial-designs to
estimate quadratic terms (recall that in 2 level
designs, x:# = 1). Therefore, we must use 3
levels'(at least) for each independent variable.
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Three Level Factorial Designs

X, Delboddn] OMDR0L] LoD

Xygenk O B-120 =10 O

Bonu_s: We ohly have to eStimate 6 terms (BrPss Bé, Bi0:7
B11: B5,) Using these 9 data points, so that an estimate of
- the variance can be made at the same time.
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Example: More on v for NH,

- Estimate a'general guadratic model for the
specific volume of ammonia with temperature and
pressure as the independent variables, valid in the
region from 0 to 100 °C and 100 to 300 kPa. .
Experimental data are available from a 32 factorial
design; these data are given in the following table.

‘CEl Inc.



_'Specific Volumes of Ammonia in m3/kg

0°C7 .| 500G | 100°G"
100KkPa | 1.3145 | 15664 | 18145
200 kPa | 0.6471 | 0.7774 | 0,9035
300 kPa | 0.4243 | 0.5143 | 0.5997
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Other. Responsé Surface Designs

. As the number of independent variables
increases, the number of runs requiredfor a
full 3" design greatly increases. For
instance, ifn=3,3"=27;ifn=4,3"=81.
If experiments cost-time and/or money, this
may-be unacceptable

* However, we do not really need this Iarge
number of runs. Censider ' |
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If we have 2 ihdependent variables, we need to
estimate 6 coefficients.

If we have 3 mdependent variables, we need to
estimate 10 coefficients.

If we have 4 independent variables, we need to
- estimate 15:coefficients -

In general, iIf:\we have n independent variables, we
need to estimate (n+2)(n+1)/2 coefficients.

- Obviously, 3" runs may be overkill.. /Are there designs
which still have all variables tested at at least three
levels, but which have fewer runs?
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Box Behnken Deésigns

. The most W|dely used three IeveI factonal
design is due to Box and Behnken*

*_Designs are available for three or more
Independent variables.

e | et us.examine the three varlable case.

* G.E.P..Box and D.W. Behnken, ”Some new three level‘designs for the study of quantltatlve
variables™; Technometrigs, 2,455, (1960) '
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3 Factor Box Behnken De3|gn

The actual runs are glven by

=8 1T-1 3-01-1 407006000 ;
ol L 3l TEB50 9038 030, 4511100 5p-
X3 0 0 0sb-1 1 T91'-1 1190 0

The actual runs Would of course, be conducted ina
random order.
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" Box Behnken Example

* Consider a 10 m x,10 m plot of land from which a
leaking gasoline tank had been removed. The -
contaminated soil had been returned to the
‘excavation and clean fill added on top to
compensate for.the volume of the tank:

« The tank had been restlng on.a Iayer of compacted
clay 4.8 m below grade. The clean fill is -
estimated to occupy the upper 2.5m of the
subsurface.
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Use a Box Behnken design-to estimate the parameters in a
quadratic expression for'hydrocarbon concentration.

If z is the distance below grade and x and y. are rectangular

co-ordinates relative to.the centre of the 10'm x 10 m square,
X = =5amplies X ;454 = -1 and X =5 implies Xg 404 = 1

Y= =5 IMPlES Yeoqeq =-1:and y = Sumplies yogeq =1

z =5 Implies 2.4 =1, Z = 2:5 implies z 45,4 = -1 and

Z=3.151mplies Z, 4sq = O

Samples were taken and the foilowing were the results:

CEl Inc.



% b Bty Lo Brtiey 1 Pty 1
VR L g ) e R G
250 ToEEg 0l BELL 1 R
¢, 800 50 550 10 40 0" 70 10"

v ot TN T
e A e T S G
2 g Tt g o g Yoy
c.. 10..0 60 '5. 1100 1050 1100

Note that hydrecarbon concentrations are given in mg/kg (ppm)
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- 'Qustion for Discussion”

“Whyisn’t thefe a Box'Behnken
~ design for two independent
variables? -

‘CEl Inc.



Other. Responsé Surface Designs

. 'Cen_tral c'o'mposite 'designs (CCDS) are als_o
used, although these tend to be less efficient
than Box Behnken -

* CCDs require five Ievels and usually conS|st
of a 2 level design plus a “star-shaped”
design. These were dealt with inthe 1951
Box Wilson paper (qv)

‘CEl Inc.



'Construct'ion of a CCD 1 tWo factors |
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Mixtures and Scheffé Designs

* One area where onge can encounter problems is In
the optimal design of mixtures, because the '
physical requirement that the sum of all the mass
fractions must be one reduces the rank of the X
matrix _ | .

e The way around this and the way to approach
experimental design is due to Scheffe*

*H: Scheffé, "Experiments with mixtures’ J. Roy. Statist. So¢, B20, 344-360 (1958),: and
H. Scheffé “The simplex-centroid design for experiments with mixtures”; J. Roy. Statist. Soc.,

B25, 235- 263 (1963) . gl b



Henry Scheffe
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In order to not have this problem with rank, Scheffé found
that you could eliminate the constant. »

?

Consider a linear function of the two components of a
mixture, X, and X, . _

oY= Bot Baxg  PoXy
Since 1 =x; + X, we can write
y = BolXq +X5) + BaXy + BoX;

= (Bot BoXy +(Bot Ba)%;

CEl Inc.



Scheffeé also came up with simplex-centroid
experimental ‘designs. For three components,

The design points'correspond to all permutations of‘the pure components:
(e.0.,100;010; 00 1), theqpermutations of the binary blends«(*2 % 0; %20

Y%; 0 % 1%2) and the one blend involving equal parts of all three components.
CEl Inc.



The points‘in the simplex centroid design for three components are:;

X/ 10 0% % 0 1/3
X, 10+1 0 %0+ % 1/3
X, 0 0°1 0 % %1/3

Note that this design only contains 7 runs. A full quadratic model for
three components requires 9, since we:will eliminate the*constant. Te get
sufficient data, it is usual to add

x| 23 106 1/6
x| 1/6 213 1/6
x| 16 16 213

CEl Inc.



Let’s look at an example that takes-us back to experimental -
design’s agricultural roots.. Synthetic mixtures of sand, silt'and
clay are used to grow potatoes under controlled conditions. The
response is measured as kg potatoes yield:per square metre of
bed. kind the general quadratic. model that best fits'the data.

Sand Fraction.1 0 0 %%._% 0 1/3:.2/3 1/6 1/6"
Silt Fraction® 0.1 0% 0. %2 "1/3"1/6 2/31/6
Clay Fraction 00 1.0 %/'% 1/3 1/6 1/6.2/3
Yield (kg/m?) 48 12 6 16511 10 15519 15 9.

‘CEl Inc.



Sequential Designs

A sequential design is one in which future
experimental conditions depend onthe results -
of previously conducted experiments. The one
sequential design that:we have seen is the
central composite design. Another sequential .
design that'is also used is the procedure known
as Evolutionary Operation (or EVOP)
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Evolutionary Operation (EVOP)

The term Evolutionary Operation (or. EVOP) is due
to George Box*, although.the method as presently
known (using the “simplex” algorithm) is-due to
Spendley et.al**; the numerical algorithm was
further refined by Nelder and Mead***.

*G.E.P. Box, “Evolutionary operation: A method foriincreasing industrial
productivity”, Applied Statistics.6,/81-101 (1957).

**W. Spendley, G.R. Hext and F.R. Himsworth, ° Sequentlal appllcatlon of
simplex designs in optimization and EVOP”, Technometrics 4, 441-461 (1962).

**%] A. Nelder and R. Mead, “A simpiex method for function minimization’;
Computer Journal 7, 308-313 (1965).
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Evolutionary Qperation
' The basicidea is to determine (lby some other
technique) the factors that-influence the _
response. EVOP can then be used to determine

_what values of these factors to use to maximize
(or m|n|m|ze) the response.

If n factors have been found that influence the.
response, n + 1 runs that are linearly
‘independent are made (e.g. if there are 2
Important factors, 3 runs are made at’conditions’
that do-not lie on a-straight line).
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Evolutionary Operation, cont’d

The n + 1 points in n-space form a simplex (3
points in 2-space form a triangle, 4 points in 3-+ °
space form a tetrahedron,...). The simplex
method consists of disearding the.worst result.and
testing at.one new-condition; - this is done
repeatedly until a maximum (or minimum) is
reached.
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Evolutionary Operation, cont’d
One of the main advantages of EVOP is that after
the process begins, the runs,can often be made
without major disturbances of the process under
study. As the process continues, the changes in the

input variables required by the process become
smaller and smaller.

To illustrate the method, let us proceed with an
obvious example with twa input variables,
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Geometry of 2— D Simplex Method

no
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W.Worst point
b best point
nb next best

c centroid of points
left after w
removed:

r reflection of w
threugh ¢



EVOP Example
< Z 1s the response to two Iinput variables x and y;
Z 1s given by . _
. A e 100/(1+xé+y2) .
" Clearly, we can see that. Z is maximized for x =

y.= 0 and takeson no other local- maxima or:.
minima for any finite, real x-and y values.

- Assuming that we de not know:about this : '
maximum, the-simplex:method tells us to find -
Zat 3 points:
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o 4 Clearly. (3,3) is w, (2,0)is b

B e .and(2,2) is nb.” Removing
w, the centroid of the

Z,20::5.26 114 remaining points is (2,1);

To reflect w through ¢, either

1. Add the vector sum of ¢ —w to c, or
2. Simply computer = 2c—~w
In our case, r =+2(2,1) - (3,3) = (1,21)
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Computing Z(r) = 33.3,/0ur three points in the
simplex are now

e e D 1 " . The worst point is at
- . - (2,2). -The centroid:
e S R after the worst point is

7 00 11 333 removed Is (3/2,;-1/2).
The reflection of the
- “worst point through
the centroid is 2c — w
or (1,-3). |

Z(r) = 9.09 (worse than last worst)! Now what?
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Geometry of 2— D Simplex Method

no
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W.Worst point
b best point
nb next best

c centroid of points
left after w
removed:

r reflection of w
threugh ¢



If the result at the reflection is worse than the tesult
at w, replace r by the midpoint from w to c. In our
case, this contraction would be ¥2{(2,2) + (3/2, -
1/2)} or (1.75, 0.75). Z(1.75, 0.75) = 21.62. Now
our three.points entering the next Iteration.are:

B ] S
Th R B AN iz
B 50 38R 216X
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For the next iteration,w = (2, 0),c. =
(1.375, -0,125) and.r. = (0.75, -0.25).

Then, Z(r). = 61.5 and we are starting to
cohverge on (0, 0) in this third iteration.

If we continue on-with this-process, we
gradually-approach.the optimal conditions.
Plotting the worst and best values of Z at

each Iteration gives the following graph.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Here the best value ofZ at-each iteration gives -
the upper curve and the worst value gives the

lower curve. The “S-shaped” oriogistic curve
‘for the worst values 1s typical of many EVOPs. .
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Another observation from the.graph is that,
after 11 or 12 iterations, even the “worst”
conditions are closeto optimal. Ifthis were a
plant process, the EVVOP process could
continue as part of a continuous Improvement
plan making.small incremental gars with =
little or no downside risk to-the operation.
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Warning #1

The experimental runs used to eonverge

on the:-maximum (or minimum) response
-are not good data:to to use for generating
a response surface madel. 1f you need a

model, generate data using a |

-.conventional response surface design:.

CEl Inc.



Warning #2

If there are uncontrollable inputs that
are comparable in'size to the effects of .
_the controllable inputs, the EVOP
_process may never converge. The
simplex-may either oscillate with
variations in-the uncontrollable mputs
“or diverge completely. |
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Warning #2, and Possible. Clre

A possible cure is to deal with average responses,
where the averaging is‘over a longer time period
than the characteristic tlmes assomated with the
uncontrollable inputs.: | |

If the uncontrollable inputs-have vastly different
characteristic times, this averaging may not be
possible and'a method other than:EVVOP must be
used for optimization.
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Epnogue

Wlth aII the.matrix algebra and n-
space geometry, don’t forget that this

. all started out as a way to grow the .-

best potatoes with the mlnlmum
amount of manure.
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