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What is Experimental Design?

• Designing experiments to yield the most 
information from the fewest runs

• Isn’t this obvious?  Shouldn’t most people 
with a science or engineering background 
know this stuff intuitively? 
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History

• Agricultural field trial work of Fisher* in 
the 1920s

• Chemical industry work of George Box, 
starting in 1951 with the publication of his 
work term notes from ICI**

*R.A. Fisher, ”Studies in Crop Variation. II. The Manurial Response of Different Potato 
Varieties”, J. Agricultural Sci., 13, 311-320 (1923)

** G.E.P. Box and K.B. Wilson, ”On the experimental attainment of optimal conditions”, J. 
Roy. Statist. Soc., B13,1-45 (1951)
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Ronald A. Fisher
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George E.P. Box
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Fisher’s window is a 7x7 
Latin square for yield 
studies on potatoes.

Memorial windows for 
Venn and Fisher, Caius 
College, Cambridge
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N-space and Real Space

• It is often useful to move back and forth 
between sampling for a spatial function of  
x and y (or, of x, y and z) and testing a 
function of several other independent 
variables (temperature, pressure, 
concentration of reactants, etc.)
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Two Basic Types of Design

• One that identifies influential variables or 
the “effects” different variables have

• One that determines approximate functional 
form of a relationship or the “response 
surface”
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Two Level Factorial Designs

• If we are to determine which  variables 
influence a result, usually use a two level 
factorial design

• For example, determine if temperature and 
pressure influence the specific volume of 
ammonia  -- will look at P and T at “high”
and “low” levels 
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high x x

Pressure

low x x

low high
Temp.
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Specific Volume of Ammonia

• Four runs are needed to get all combinations 
of “high” and “low”

• Usual to use coded independent variables 

Xc = 2 (x – xav)/(xhigh – xlow)
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Coding

• For example, if the temperature ranges from 
40 oC to 140 oC
– If T = 40 oC, Tc = -1 
– If T = 140 oC, Tc = +1
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P
x x+1

T
-1 +1

x xx-1

Full Two Level Factorial Design in Two Factors
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Experimental Runs

Order T, oC P, kPa Tcoded Pcoded V, m3/kg

3 40 500 -1 -1 0.29

2 40 1000 -1 +1 0.14

4 140 500 +1 -1 0.40

1 140 1000 +1 +1 0.19
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Effect of Temperature?

V

0.215

0.295

Tc-1 +1
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Effect of Pressure?

0.345

0.165

P-1 +1



CEI Inc.

Effect of T, P Interaction?

0.27
0.24

TP
-1 +1
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Effect of T2?    P2?

In 2 level factorial designs, the 
squared terms are always equal 
to 1.



CEI Inc.

Empirical Models

• It is often preferable to fit to some sort of 
empirical model

• It can be shown that the most general 
polynomial model that can be estimated 
from a full 2 level factorial design in two 
factors is 

y = β0 + β 1x1 + β2 x2 + β12 x1x2
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Our data can be written out as

β 0 - β 1 - β 2 + β 12 =  0.29

β 0 - β 1 + β 2 - β 12 =  0.14 

β 0 + β 1 - β 2 - β 12 =  0.40

β 0 + β 1 + β 2 + β 12 =  0.19

i.e. four equations in four unknowns, so there 
should be a solution.
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The solution is easier if we use matrices 
(really).

y = X β
Note that this is 
not really least 
squares estimation 
as there is no 
redundancy.

Xt y = Xt X β

β = (Xt X)-1 Xt y
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In our example,

1  -1  -1   1

1  -1   1  -1

1   1  -1  -1

1   1   1   1

β0

β 1

β 2

β 12

0.29

0.14

0.40

0.19

=
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1   1   1   1

-1  -1   1   1

-1   1  -1   1

1  -1  -1   1

1  -1  -1   1

1  -1   1  -1

1   1  -1  -1

1   1   1   1

Xt X =

4   0   0   0

0   4   0   0

0   0   4   0

0   0   0   4

=
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¼ 0   0   0

0  ¼ 0   0

0   0  ¼ 0

0   0   0   ¼

(Xt X)-1 =

1   1   1   1

-1  -1   1   1

-1   1  -1   1

1  -1  -1   1

0.29

0.14

0.40

0.19

1.02

0.16

-0.36

-0.06

Xt y = =
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0.255

0.040

-0.090

-0.015

β = (Xt X)-1 Xt y =
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or,

y = 0.255 + 0.04 Tcoded – 0.09 Pcoded – 0.015 Tcoded Pcoded
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What if we have 
three factors?
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x1 x2 x3

-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1
1 -1 1
1 1 -1
1  1 1



CEI Inc.

Three Independent Variables

• Our example could be the partial oxidation 
of o-xylene
– x1 could be coded temperature
– x2 could be coded partial pressure of oxygen in 

the feed to the reactor
– x3 could be the coded presence or absence of 

bismuth molybdate catalyst
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In two-level factorial designs, can incorporate Boolean variables

i.e. x3 = -1 if no catalyst used

= +1 if catalyst used.

With three variables, the most general polynomial model that 
can be generated from a full 2 level factorial design is

y = βo + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + 
β123x1x2x3

Note:  there are still no squared terms.
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Exercise (left to student)

Show that, for a full 2 level design in three variables, the 

(Xt X)-1 matrix is:

1/8   0    0    0    0    0    0    0

0   1/8  0    0    0    0    0    0

.

.

0     0   .  .  .                 0  1/8
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Fractional Factorial Designs

• The word “full” has been used a lot here.  
Are there 2 level designs that are not “full”?

• Consider the 3 variable design above.  In a 
full design, 23 or 8 runs are needed.  What  
if we can only do 4 runs  -- is there an 
intelligent way to choose the runs?
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x1 x2 x3

-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1
1 -1 1
1 1 -1
1  1 1
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(poor choice)
We could just take the first 4 runs (where x1 is always –1), 
but then x1 doesn’t vary.  Can we pick the 4 runs so that all of 
the xi terms vary?

(good choice)
x1   x2 x3

-1         -1              1

-1           1            -1

1          -1            -1

1            1             1

Note:  each xi varies and 
no columns are identical
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However, you can confirm that

x1 = x2 x3

x2 = x1 x3 These are termed 
“confounding”
relationships.x3 = x1 x2

and x1 x2 x3 = 1

Thus, the 8 parameter model cannot be determined by this 
data (we should have known that you can’t estimate 8 
parameters with 4 runs).
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Often, make the assumption that interaction effects are negligible 
(relative to linear effects).  Then, fit a simpler model to the data:

y = βo + β1x1 + β2x2 + β3 x3

but recognize that, for example, β2x2 really represents β2x2 + 
β13x1x3, and so on.

How did I come up with this subset of 8 runs that ensured that 
the linear effects wouldn’t be confounded with each other?



CEI Inc.

Generators

• I used the relationship  1 = x1x2x3  (i.e. the 
three way interaction term is set to the 
constant, or  β0 and β123x1x2x3 will be 
indistinguishable).

• Multiply the equation above by x1:
x1 = x1

2x2x3
But x1

2 = 1 in a 2 level factorial design, so 
x1 = x2x3.
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Similarly,

x2 = x1 x3

x3 = x1 x2

Exercise (left to students)

Show that x1x2x3 = -1 picks out the other four runs in the 
full 23 design.
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Resolution

• In our 4 run subset of the 23 design, (termed 
a 23-1 fractional factorial design),
– zero order terms (the constant) were 

confounded with third order terms
– first order terms were confounded with second 

order terms
• Note that the sum of the orders of the 

confounded terms is three
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Our 4 run subset of the 23 design is then 
termed to have “resolution III” and is 
denoted as a 

23-1
III design

The higher the resolution, the better.  If we took 
our “poor choice” subset where x1 = -1, that 
would be resolution I.
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Plackett Burman Designs

• In general terms, fractional 2 level factorial 
designs are used to screen a large number of 
possibly influential variables to see if they 
truly influence the response.  We usually 
assume that the effects of second order and 
higher terms (interactions) are much less 
than those of the constant and linear terms.
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Plackett Burman Designs

• The most efficient of these “screening”
designs is due to Plackett and Burman*

• 12 runs can test up to 11 independent 
variables (other PB designs have 20, 24, 28, 
and so on for the number of runs)

* R.L Plackett and J.P. Burman, “The Design of Optimal Multifactorial 
Experiments”, Biometrika, 33, 305-325, (1946)
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Plackett Burman Designs

• The Plackett Burman designs are based on 
certain properties of Hadamard matrices

• All PB designs are of resolution III

• PB designs are sometimes termed 
“saturated”
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1 +   +   +   +   +   +   +   +   +   +   +
2 - +    - +   +   +    - - - +   -
3 - - +   - +   +   +   - - - +
4 +   - - +    - +   +   +   - - -
5 +   +   - - +   - +   +   +   - -
6 - +   +    - - +   - +   +   +    -
7 - - +   +    - - +    - +   +   +
8 +    - - +   +    - - +   - +   +
9 +   +    - - +   +    - - +    - +
10 +   +   +    - - +   +    - - +   -
11 - +   +   +    - - +   +    - - +
12 +    - +   +   +    - - +    +    - -

Plackett Burman 
design to test 11 
variables in 12 
runs
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Significance, Variances and Error 
Bounds

• The fitted models we have discussed utilize 
all of the experimental data to generate 
coefficients  -- there are no “degrees of 
freedom” left to estimate variances 

• If there is an independent estimate of the 
“pure error variance” (call it s2) and if it can 
be assumed that this does not vary across 
the domain of interest, then
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V(β) = (Xt X)-1 s2

and   V(y) = X (Xt X)-1 Xt s2
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Note
Although the V( ) notation suggests that we 
are talking about variances, it should be 
obvious that we are only talking about 
estimates of variances.  If we wish to find 
confidence intervals for the true variances, 
we will need to use the χ2 test;  confidence 
intervals for the true values of the β
parameters or the predicted y values will 
require a t-test.
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Note to the Note
If the confidence interval for one of the β
terms includes zero, the data are telling us 
that that particular combination of variables 
is not influencing the result (or if it does 
have an influence, the influence is less that 
the effects of the uncontrollable variables 
(i.e. “the noise”)).  The parameter and the 
corresponding combination of variables 
should be omitted from the model.
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Aside on Nomenclature

If the prediction variance (V(y)) is only a 
function of the distance from the centre of 
the design (and not otherwise a function of 
position), we say that the design is 
rotatable.  It can be shown that this leads to 
robust estimation of the response surface.
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Response Surface Designs

• Once we have determined which variables 
influence a response, we would like to 
quantify “how much” or determine a 
maximum or minimum over the domain 
under study

• 1.  If we have a really good idea of the 
functional relationship between dependent 
and independent variables, use a “parameter
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estimation design”.  Briefly, test in areas of the 
domain where a small change in the parameters 
will yield a large change in the response.  We 
will not deal further with this here.

2.  If we do not know the functional form of 
the relationship, we may proceed by assuming 
an empirical relationship.  The simplest 
functional form that will allow for local 
maxima and minima is the general quadratic:
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1 variable: y = β0 + β1x1 + β11x1
2

2 variables: y = β0 + β1x1 + β2x2 + β12x1x2 + β11x1
2

+ β22x2
2

3 variables: y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + 
β13x1x3 + β23x2x3 + β11x1

2 + β22x2
2 + β33x3

2

and so on.
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We cannot use 2 level factorial designs to 
estimate quadratic terms (recall that in 2 level 
designs, xi

2 = 1).  Therefore, we must use 3 
levels (at least) for each independent variable.
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Three Level Factorial Designs
1 Independent Variable:

y

0 x-1 1

Test at xcoded = -1, 0 and +1.
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Three Level Factorial Designs
2 Independent Variables

-1 10
x

x

x x

x2

x 1 x

x1

9 Runs
x x-1x
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Three Level Factorial Designs

x1 -1  -1  -1   0   0   0   1   1   1

x2 -1   0   1  -1   0   1  -1   0   1

Bonus:  we only have to estimate 6 terms (β0, β 1, β2, β12, 
β11, β22) using these 9 data points, so that an estimate of 
the variance can be made at the same time.
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Example:  More on v for NH3

Estimate a general quadratic model for the 
specific volume of ammonia with temperature and 
pressure as the independent variables, valid in the 
region from 0 to 100 oC  and 100 to 300 kPa.  
Experimental data are available from a 32 factorial 
design;  these data are given in the following table.
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Specific Volumes of Ammonia in m3/kg

0oC 50oC 100oC

100 kPa 1.3145 1.5664 1.8145

200 kPa 0.6471 0.7774 0.9035

300 kPa 0.4243 0.5143 0.5997
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Other Response Surface Designs

• As the number of independent variables 
increases, the number of runs required for a 
full 3n design greatly increases.  For 
instance, if n = 3, 3n = 27; if n = 4, 3n = 81.  
If experiments cost time and/or money, this 
may be unacceptable.

• However, we do not really need this large 
number of runs.  Consider



CEI Inc.

If we have 2 independent variables, we need to 
estimate 6 coefficients.

If we have 3 independent variables, we need to 
estimate 10 coefficients.

If we have 4 independent variables, we need to 
estimate 15 coefficients

In general, if we have n independent variables, we 
need to estimate (n+2)(n+1)/2 coefficients.

Obviously, 3n runs may be overkill.  Are there designs 
which still have all variables tested at at least three 
levels, but which have fewer runs?
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Box Behnken Designs

• The most widely used three level factorial 
design is due to Box and Behnken*

• Designs are available for three or more 
independent variables.

• Let us examine the three variable case.

* G.E.P. Box and D.W. Behnken, ”Some new three level designs for the study of quantitative 
variables”, Technometrics, 2, 455, (1960)
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3 Factor Box Behnken Design

Note:  there are 12 individual runs on the centre points of the 
edges of a cube and 3 points at the centre of the cube.
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3 Factor Box Behnken Design

The actual runs are given by

x1 -1   1  -1   1  -1   1  -1   1   0   0   0   0   0   0   0

x2 -1  -1   1   1   0   0   0    0  -1   1  -1  1   0   0   0

x3 0   0   0   0  -1  -1   1    1  -1  -1   1  1   0   0   0

The actual runs would, of course, be conducted in a 
random order.
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Box Behnken Example

• Consider a 10 m x 10 m plot of land from which a 
leaking gasoline tank had been removed.  The 
contaminated soil had been returned to the 
excavation and clean fill added on top to 
compensate for the volume of the tank.

• The tank had been resting on a layer of compacted 
clay 4.8 m below grade.  The clean fill is 
estimated to occupy the upper 2.5 m of the 
subsurface.
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Use a Box Behnken design to estimate the parameters in a 
quadratic expression for hydrocarbon concentration.

If z is the distance below grade and x and y are rectangular 
co-ordinates relative to the centre of the 10 m x 10 m square,

x = -5 implies xcoded = -1 and x = 5 implies xcoded = 1

y = -5 implies ycoded = -1 and y = 5 implies ycoded = 1

z = 5 implies zcoded =1, z = 2.5 implies zcoded = -1 and 
z = 3.75 implies zcoded = 0

Samples were taken and the following were the results:
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x        -1      1      -1      1     -1     1    -1      1

y        -1     -1       1      1      0     0      0      0

z         0       0       0      0     -1   -1      1      1

cHC 800    50   550    10    40     0    70    10

x        0     0      0      0        0        0         0

y       -1     1     -1     1         0        0         0

z       -1    -1      1     1         0        0         0

cHC 10     0    60     5   1100   1050   1100

Note that hydrocarbon concentrations are given in mg/kg (ppm)
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Question for Discussion

Why isn’t there a Box Behnken 
design for two independent 
variables?
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Other Response Surface Designs

• Central composite designs (CCDs) are also 
used, although these tend to be less efficient 
than Box Behnken

• CCDs require five levels and usually consist 
of a 2 level design plus a “star-shaped”
design.  These were dealt with in the 1951 
Box Wilson paper (qv).
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Construction of a CCD in two factors
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Mixtures and Scheffé Designs

• One area where one can encounter problems is in 
the optimal design of mixtures, because the 
physical requirement that the sum of all the mass 
fractions must be one reduces the rank of the X
matrix

• The way around this and the way to approach 
experimental design is due to Scheffé*

*H. Scheffé, ”Experiments with mixtures”, J. Roy. Statist. Soc, B20, 344-360 (1958),  and

H. Scheffé “The simplex-centroid design for experiments with mixtures”, J. Roy. Statist. Soc., 

B25, 235- 263 (1963)
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Henry Scheffé
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In order to not have this problem with rank, Scheffé found 
that you could eliminate the constant.  

?

Consider a linear function of the two components of a 
mixture, x1 and x2

y = β0 + β1x1 + β2x2

Since 1 = x1 + x2, we can write 

y = β0(x1 + x2) + β1x1 + β2x2 

= (β0+ β1)x1 +(β0+ β2)x2
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Scheffé also came up with simplex-centroid 
experimental designs.  For three components,

The design points correspond to all permutations of the pure components 
(e.g., 1 0 0; 0 1 0; 0 0 1), the permutations of the binary blends (½ ½ 0; ½ 0 
½; 0 ½ ½) and the one blend involving equal parts of all three components.
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The points in the simplex centroid design for three components are:

x1 1   0   0   ½ ½ 0   1/3 

x2 0   1   0   ½ 0   ½ 1/3  

x3 0   0   1   0   ½ ½ 1/3

Note that this design only contains 7 runs.  A full quadratic model for 
three components requires 9, since we will eliminate the constant.  To get 
sufficient data, it is usual to add

x1 2/3   1/6   1/6

x2 1/6   2/3   1/6

x3 1/6   1/6   2/3
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Let’s look at an example that takes us back to experimental 
design’s agricultural roots.  Synthetic mixtures of sand, silt and 
clay are used to grow potatoes under controlled conditions. The 
response is measured as kg potatoes yield per square metre of 
bed.  Find the general quadratic model that best fits the data:

Sand  Fraction 1   0   0   ½ ½ 0   1/3   2/3   1/6   1/6

Silt Fraction 0   1    0   ½ 0   ½ 1/3   1/6   2/3   1/6

Clay Fraction 0   0    1   0    ½ ½ 1/3   1/6   1/6   2/3

Yield (kg/m2) 18  12   6  16  11  10   15     19    15     9
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Sequential Designs
A sequential design is one in which future 
experimental conditions depend on the results 
of previously conducted experiments.  The one 
sequential design that we have seen is the 
central composite design. Another sequential 
design that is also used is the procedure known 
as Evolutionary Operation (or EVOP)
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Evolutionary Operation (EVOP)
The term Evolutionary Operation (or EVOP) is due 
to George Box*, although the method as presently 
known (using the “simplex” algorithm) is due to 
Spendley et al**;  the numerical algorithm was 
further refined by Nelder and Mead***.  

*G.E.P. Box, “Evolutionary operation:  A method for increasing industrial 
productivity”, Applied Statistics 6, 81-101 (1957).

**W. Spendley, G.R. Hext and F.R. Himsworth, “Sequential application of 
simplex designs in optimization and EVOP”, Technometrics 4, 441-461 (1962).

***J.A. Nelder and R. Mead, “A simplex method for function minimization”, 
Computer Journal 7, 308-313 (1965).
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Evolutionary Operation
The basic idea is to determine (by some other 
technique) the factors that influence the 
response.  EVOP can then be used to determine 
what values of these factors to use to maximize 
(or minimize) the response.

If n factors have been found that influence the 
response, n + 1 runs that are linearly 
independent are made (e.g. if there are 2 
important factors, 3 runs are made at conditions 
that do not lie on a straight line).
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Evolutionary Operation, cont’d
The n + 1 points in n-space form a simplex (3 
points in 2-space form a triangle, 4 points in 3-
space form a tetrahedron,…).  The simplex
method consists of discarding the worst result and 
testing at one new condition;  this is done 
repeatedly until a maximum (or minimum) is 
reached.
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Evolutionary Operation, cont’d
One of the main advantages of EVOP is that after 
the process begins, the runs can often be made 
without major disturbances of the process under 
study.  As the process continues, the changes in the 
input variables required by the process become 
smaller and smaller. 

To illustrate the method, let us proceed with an 
obvious example with two input variables.
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Geometry of 2 – D Simplex Method

w b

nb

c

r

w worst point

b best point

nb next best

c centroid of points 
left after w 
removed

r reflection of w 
through c
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EVOP Example
Z is the response to two input variables x and y;  
Z is given by 

Z  =  100 / (1 + x2 + y2)  .

Clearly, we can see that Z is maximized for x  =  
y  =  0 and takes on no other local maxima or 
minima for any finite, real x and y values.

Assuming that we do not know about this 
maximum, the simplex method tells us to find 
Z at 3 points:
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x      2      3       2

y      0      3       2

Z    20   5.26  11.1

Clearly (3,3) is w, (2,0) is b 
and (2,2) is nb.  Removing 
w, the centroid of the 
remaining points is (2,1).

To reflect w through c, either

1. Add the vector sum of c – w to c, or

2. Simply compute r  =  2c – w

In our case, r  =  2(2,1)  - (3,3)  =  (1,-1)
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Computing Z(r)  =  33.3, our three points in the 
simplex are now

The worst point is at  
(2,2).  The centroid 
after the worst point is 
removed is (3/2, -1/2).  
The reflection of the 
worst point through 
the centroid is 2c – w 
or (1,-3).

x       2       2        1

y       0       2       -1

Z     20    11.1    33.3

Z(r) = 9.09 (worse than last worst)!  Now what?
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Geometry of 2 – D Simplex Method

w b

nb

c

r

w worst point

b best point

nb next best

c centroid of points 
left after w 
removed

r reflection of w 
through c
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If the result at the reflection is worse than the result 
at w, replace r by the midpoint from w to c.  In our 
case, this contraction would be ½{(2,2) + (3/2, -
1/2)} or (1.75, 0.75).  Z(1.75, 0.75)  =  21.62.  Now 
our three points entering the next iteration are:

x       2       1        1.75

y       0      -1        0.75

Z     20    33.3    21.62
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For the next iteration, w  =  (2, 0), c  =  
(1.375, -0.125) and r  =  (0.75, -0.25).  

Then, Z(r)  =  61.5 and we are starting to 
converge on (0, 0) in this third iteration.

If we continue on with this process, we 
gradually approach the optimal conditions.  
Plotting the worst and best values of Z at 
each iteration gives the following graph.
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Here the best value of Z at each iteration gives 
the upper curve and the worst value gives the 
lower curve.  The “S-shaped” or logistic curve 
for the worst values is typical of many EVOPs.
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Another observation from the graph is that, 
after 11 or 12 iterations, even the “worst”
conditions are close to optimal.  If this were a 
plant process, the EVOP process could 
continue as part of a continuous improvement 
plan making small incremental gains with 
little or no downside risk to the operation.
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Warning!
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Warning #1
The experimental runs used to converge 
on the maximum (or minimum) response 
are not good data to to use for generating 
a response surface model.  If you need a 
model, generate data using a 
conventional response surface design.
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Warning #2
If there are uncontrollable inputs that 
are comparable in size to the effects of 
the controllable inputs, the EVOP 
process may never converge.  The 
simplex may either oscillate with 
variations in the uncontrollable inputs 
or diverge completely.
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Warning #2, and Possible Cure

A possible cure is to deal with average responses, 
where the averaging is over a longer time period 
than the characteristic times associated with the 
uncontrollable inputs.

If the uncontrollable inputs have vastly different 
characteristic  times, this averaging may not be 
possible and a method other than EVOP must be 
used for optimization.
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Epilogue

With all the matrix algebra and n-
space geometry, don’t forget that this 
all started out as a way to grow the 
best potatoes with the minimum 
amount of manure.


