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Abstract

Asymmetric cryptography plays an important role in modern 
digital secu-rity. This paper aims to assess the security and 
efficiency of some common techniques used in asymmetric 
cryptography. The paper outlines the RSA pro-tocol and proves 
that it is valid. Through literature review, I then explore techniques 
used to optimize RSA implementations. Algorithms for some of 
these techniques are presented in pseudocode. Mathematical 
analysis is used in order to gauge the security and expected 
computational cost of those algo-rithms. Common applications of 
RSA are described. The relationship between RSA and the classical 
DHKE is explained. It is determined that many of the techniques 
used to optimize RSA may also be applied to the classical DHKE. I 
then compare RSA to newer form of asymmetric cryptography - 
ECC. I find that in many situations, ECC is able to provide 
comparable security to RSA while requiring less set up time.
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Motivation for Research

Over the past few decades, the Internet has become increasingly integral to
everything we do. Whether we’re aware of it or not, our new highly network-
dependent world relies heavily on cryptography. Cryptography is a necessary
part of any activity that requires the secure transfer of data over the Inter-
net. This includes using email, withdrawing cash from an ATM, making online
purchases or sales, using a debit or credit card, accessing an online portal for
school or work, streaming online content, using social networking sites/apps,
and nearly anything else one might do with their computer or phone. Cryptog-
raphy can provide users with guarantees of:

Authenticity: Ensuring that the parties communicating with one another are
indeed who they claim to be.

Confidentiality: Preventing information communicated from being disclosed to
unauthorized parties.

Integrity: Preventing information communicated from being modified by unau-
thorized parties.

Before comparing asymmetric protocols, it is necessary to develop a foun-
dational understanding of how asymmetric cryptography works. I begin by
exploring the difference between asymmetric and symmetric methods of cryp-
tography. I then present a criteria that must be fulfilled by the functions
used when developing a public key cryptosystem. I then analyze the efficacy,
cost, and uses of one of the most common asymmetric cryptographic protocols:
Rivest-Shamir-Adleman (RSA). The paper also touches on the Diffie-Hellman Key Exchange (DHKE),
and the use of Elliptic-Curve Cryptography (ECC).

Asymmetric vs Symmetric Methods

There are two main methods for designing cryptographic schemes - symmetric methods
and asymmetric methods. When using a symmetric method, all parties commu-
nicating share the same secret key. This shared key is used to encrypt and de-
crypt messages. The word ”symmetric” is used because the key used to encrypt
messages is the same as the key used to decrypt messages. All cryptography
from ancient times until 1976 was exclusively based on symmetric methods.1

When asymmetric methods are used for encryption and decryption, two differ-
ent keys are used: a private key and a public key. Anyone with the public key
can encrypt data, but only the private key can be used to decrypt data that has
been encrypted using the public key. When asymmetric methods are used to
develop a system for encryption and decryption, that system is referred to as a
public key cryptosystem.
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Although modern symmetric algorithms are fast and secure, they do have a
major short-coming. In order for a symmetric protocol to work, the secret key
must first be exchanged between the parties that intend to communicate. To
ensure the security of the symmetric scheme, this secret key must be communi-
cated over a secure channel. This presents a serious logistics problem - the key
must be shared in order to encrypt data, but the key itself must be encrypted
in order for it to be shared. The problem of securely communicating a secret
key is referred to as the key distribution problem..

Asymmetric methods can be used to solve the key distribution problem. A
secret key (to be used for a symmetric method) can be encrypted and shared
using asymmetric methods. The exact details of this key exchange depend on
the implementation of the cryptosystem(s) used in the key exchange. I will
provide examples of key distribution techniques throughout my paper. Another
important use of asymmetric methods is the creation of digital signatures. Digi-
tal signatures provide a way to assure that the author of a message is authentic,
and that the message has not been compromised. But if asymmetric methods
can already be used to encrypt data and more, why do we bother using asym-
metric methods for key exchange? Why not simply encrypt our messages using
the public key cryptosystems themselves?

Unfortunately asymmetric methods are based on computationally heavy
mathematical functions. As such, the actual execution of asymmetric algorithms
tends to be much slower than the execution of their symmetric counterparts
(slower by a factor of about 1, 000 according to Kumar et al (2011)).3 Because
of this short-coming, asymmetric methods are rarely used for the encryption of
large amounts of data. Instead, asymmetric methods are typically integrated
with symmetric methods - asymmetric methods solve the key distribution prob-
lem and provide other important security measures, while symmetric methods
are used to encrypt any bulk data that must be communicated.14

Criteria for Public Key Cryptosystems

The importance of asymmetric methods is undeniable, but a way of designing
such methods is not immediately obvious. Consider the problem of setting up
a public key system. Those interested in creating such a system need a process
for generating two functions, a decryption function, D(m), and an encryption
function E(m). Their process must satisfy the following criteria:
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Criterion 1) D(E(m)) = m for any valid input message m.

If it were not the case that D(E(m)) = m, then the decryption function would
not reverse the encryption function, and would therefore not reliably return the
correct message.

Criterion 2) Both D(m) and E(m) must be computationally easy.

This criterion ensures that the cryptosystem is practical. If the process of
encryption or decryption required too much time (or too many resources), then
the system would not be useful.

Criterion 3) It must be computationally unfeasible to deduce D(m) using E(m).

It is necessary that D(m) be kept secret from individuals knowing E(m). If
this were not the case, then anyone holding the public key could decrypt data.

Criterion 4) It must be computationally easy to generate many function pairs, E(m) and D(m)

Each time the public key system is initialized, a new pair of public/private keys
(hence a new pair of functions, E(m) and D(m)) should be generated. If the
same keys were used each session, then the system would not be secure. It fol-
lows that the process of generating a new function pair, E(m) and D(m), must
be relatively computationally easy. The maximum acceptable cost of initializing
the public key system tends to be much larger than the maximum acceptable
cost of encrypting and decrypting messages. This is because the system must
be initialized only once per each session.

The phrase computationally easy is somewhat ambiguous. The acceptable
cost of computing E(m) and D(m) depends on the intended use of the cryp-
tosystem, as well as the technology available to execute the functions. By nearly
any standard, if functions are to be considered computationally easy, the func-
tions must run in at most polynomial time.15 That is, an upper cap on the
runtime of E(m) and D(m) must be expressible as a polynomial function of the
bit length of the input, m. Using asymptotic complexity notation, one can say
that if a function, F (m), is to be considered computationally easy, then it must
be the case that F (m) = O(p(m)) where p(m) is some polynomial function.
Note that although F (m) = O(p(m)) is a necessary condition for F (m) to be
considered computationally easy, it is not a sufficient condition.

Similarly, the phrase computationally unfeasible is ill-defined. The more
computationally difficult it is to deduce D(m) using E(m), the more secure the
cryptosystem is. However, the level of computational difficulty that is needed
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depends on both how secure the system is expected to be, and the technology
available to attackers. Typically, in order for a problem to be considered compu-
tationally unfeasible, it must be estimated that with the best modern technology
and the best known algorithms for solving the problem, the problem would still
take several thousand years to solve.15 Often times, the computational difficulty
of a problem can be deceptive - advances in algorithms and hardware can quickly
transform seemingly impossible problems into manageable ones. For example,
in 1977, Rivest estimated that factoring a 125 digit number which is the prod-
uct of two 63 digit primes would require at least 40 quadrillion years using the
best factoring algorithm known.38 However, by 1994, such numbers had already
been factored. By 2005, an RSA modulus of over 200 digits had been factored.
A chart of the records for the largest RSA modulus factored between the years
1964 and 2005 is contained in Appendix III (Figure 1).

An Introduction to RSA

RSA is the most widely used asymmetric encryption algorithm to date.16

It was publicized in 1977 and it is named after its inventors, Ron Rivest, Adi
Shamir, and Leonard Adleman. The security of RSA relies on the difficulty of
factoring large numbers.

The basic idea behind RSA is quite simple. During the initialization phase
the public and private keys are generated. When the initialization phase begins,
two distinct primes, p and q must be found. Let n = pq. The encryption power e
is then chosen∗: emust be a positive integer such that gcf(e, (p−1)(q−1)) = 1.∗∗

∗(Note that in this case, e does not refer to the base for the natural loga-
rithm.)
∗∗(Throughout this paper, the notation gcf(x, y) denotes the greatest common
factor of x and y.)

Using the Extended Euclidean Algorithm6, one can then find d ∈ Z+ such that
ed = 1+k(p−1)(q−1) for some k ∈ Z+. The integer d is used as the decryption
power. The public key is then broadcast as the pair of values, (e, n). While the
private key, d, is kept secret.

Once the initialization phase is complete, users are ready to encrypt plaintext
messages m. In order for m to be encrypted, m must be an integer with
0 ≤ m < n. If the message m is not already a non-negative integer, some
encoding technique can transform m into a non-negative integer. If m ≥ n,
then m can be broken up into several smaller blocks, and each block can be
encrypted and sent individually. With an appropriate input m, the RSA en-
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cryption function is defined as follows:

E(m) = me % (n)

Throughout this paper, the notation x % (n) denotes reduction of x mod n.
To be precise:

x′ = x % (n) if and only if x′ is the unique integer such that x′ ≡ x mod n and
x′ ∈ {0, 1, 2, ..., n − 1}. A proof of the uniqueness of x′ is given in Appendix I
(Theorem A.) The set {0, 1, 2, ..., n−1} is known as the canonical complete residue system modulo n.

The RSA decryption function is as follows:

D(c) = cd % (n)

Proof of the Correctness of RSA

Suppose RSA parameters were initialized in the manner described above. I
will prove that D(E(m)) = m for any valid input m. Throughout this paper
I will take for granted certain properties of modular arithmetic. Appendix I
presents some auxiliary proofs that support these assumptions.

I will first show that med ≡ m mod n. I will then use this result to show
that D(E(m)) = m.

Since n is the product of two primes, p and q, its only factors are 1, p, q, and pq.
Further, since m < n = pq, it must be the case that gcf(m,n) 6= pq. The only
remaining possibilities are: gcf(m,n) = 1, gcf(m,n) = p, or gcf(m,n) = q.
Partition the possible choices for m into two cases:

Case A : Suppose gcf(m,n) = 1. Then:

med = mk(p−1)(q−1)+1 = (m(p−1)(q−1))k ∗m = (mφ(n))k ∗m

Where φ represents the Euler Totient Function. Euler’s Theorem9 shows that
for any m such that gcf(m,n) = 1, it is the case that mφ(n) ≡ 1 mod n. Thus:

(mφ(n))k ∗m ≡ (1)k ∗m ≡ m mod n

Hence, if gcf(m,n) = 1, then med ≡ m mod n.

Case B : Now consider cases where gcf(m,n) is either p or q. Without loss
of generality, one can suppose gcf(m,n) = p. Then:
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med = mk(p−1)(q−1)+1 = (mq−1)k(p−1) ∗m = (mφ(q))k(p−1) ∗m

Where φ again represents the Euler Totient Function. Using Euler’s Theorem,
this reduces to:

(mφ(q))k(p−1) ∗m ≡ (1)k(p−1) ∗m ≡ m mod q

Since gcf(m,n) = p, p divides m. Hence:

med ≡ 0ed ≡ 0 ≡ m mod p

Since med ≡ m mod p, med ≡ m mod q, and gcf(p, q) = 1, by Theorem C in
Appendix I, it must be the case that med ≡ m mod pq. Thus if gcf(m,n) = p
then med ≡ m mod n.

An identical argument can be made to show that when gcf(m,n) = q it is
the case that med ≡ m mod n. Thus for any valid selection of m, it must be
the case that med ≡ m mod n.

One more detail must be addressed to prove that D(E(m)) = m:

Let D(E(m)) = m′. Note that by construction of the decryption function
(which involves reduction modulo n), m′ is contained in the canonical complete
residue system modulo n. I have already shown that m′ ≡ m mod n. Hence, by
Theorem A in Appendix I, it must be the case that m′ = m. (m is the unique
representative of m in the canonical complete residue system modulo n.)

Q.E.D.

Naive Modular Exponentiation

I have shown the correctness of the RSA decryption and encryption func-
tions, but it must also be shown that these functions are not too costly. The
encryption and decryption functions in RSA are very simple - all that must be
done is exponentiation and reduction modulo n. So how does one perform this
modular exponentiation?

Suppose you want to take m and raise it to the e’th power (where e is the
encryption power in the RSA system). A naive approach would be to start with
m, and then multiply m by itself e − 1 times. Afterall - exponentiation is just
repeated multiplication. Modern RSA exponents are typically between 2048
and 3072 bit numbers.4 Straightforward multiplication would therefore take up-
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wards of about 22048 multiplications. Suppose a computer can multiply by m
and perform a reduction modulo n in a microsecond. It would then require
about 10600 millennia to encrypt our data. Unfortunately, most users are un-
willing to wait even one millennium! Fortunately, mathematical techniques can
be used to expedite the exponentiation. In the original paper in which RSA was
published, the Repeated Square and Multiply Technique was recommended to
speedup exponentiation.5 I will describe this method and analyze the expected
cost of exponentiation using this method.

The Repeated Square and Multiply Technique:

The objective of the Repeated Square and Multiply Technique is to take an
integer m, and compute me % (n). For the sake of simplicity, I will not explic-
itly address the reduction modulo n in my algorithm. In nearly any real-world
implementation, reduction modulo n takes place after each squaring or multi-
plication.

Suppose e is an k bit integer. The description of this method will make
use of the binary representation of the integer e. Binary values will be denoted
by parentheses and a subscripted 2. Let e = (a1a2a3...ak)2 where a1 = 1 and
ai ∈ {0, 1} for 2 ≤ i ≤ k. Then the algorithm proceeds as follows:

Repeated Square and Multiply Algorithm

Step 1:
Initialize m1 = m. Move to the next step.

Step i (for 1 < i ≤ k):
If ai = 0 let mi = (mi−1)2.

If instead ai = 1, let mi = (mi−1)2 ∗m. Move to the next step.

Step k + 1:
Return mk as the output. Terminate the algorithm.

Correctness of the Repeated Square and Multiply Technique

Recall that the exponent e can be represented in binary as e = (a1a2...ak)2.
I will make the inductive assumption that mi = m(a1a2...ai)2 for any 1 ≤ i ≤ k.
Below the validity of this induction is proven:
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BASIS STEP (i = 1):

The algorithm starts by setting m1 = m. Hence:

m1 = m = m(1)2 = m(a1)2

Thus for i = 1 it is the case that mi = m(ai)2 .

INDUCTION (1 < i ≤ k) (part A):

Suppose ai = 0. By the inductive assumption, mi−1 = m(a1a2...ai−1)2 . Since
ai = 0, the i’th step computes mi = (mi−1)2. Using the inductive assumption
and binary notation, it follows that:

mi = (mi−1)(10)2 = (m(a1a2...ai−1)2)(10)2 = m(a1a2...ai−1)2∗(10)2 = m(a1a2...ai−10)2 =
m(a1a2...ai−1ai)2

Thus if ai = 0, the inductive assumption holds.

INDUCTION (1 < i ≤ k) (part B):

Suppose instead that ai = 1. Then on the i’th step, the algorithm begins
by squaring mi−1. As shown above, (mi−1)2 = m(a1a2...ai−10)2 . The algorithm
then multiplies the result by m, yielding:

mi = (mi−1)2 ∗m = m(a1a2...ai−10)2 ∗m(1)2 = m(a1a2...ai−11)2 = m(a1a2...ai−1ai)2

Again the inductive assumption holds. This shows that for all 1 ≤ i ≤ k it
is the case that mi = m(a1a2...ai)2 . It follows that mk = m(a1a2a3...ak)2 = me.
Since mk = me, the algorithm must provide the desired output.

Q.E.D.

The Cost of the Repeated Square and Multiply Technique

How does the cost of the Repeated Square and Multiply Technique compare
to the naive approach? If e is a k bit integer, the algorithm must perform
k − 1 squarings, as each time it ”add a bit” it must square the current stored
value. The algorithm must also perform H(e)− 1 multiplications by m, where
H(e) is the number of 1’s in the binary representation of e. (H(e) is known
as the Hamming weight of e.) The number of bits needed to represent e is
blog2(e)c + 1. If you assume that the digits of the bits of e are evenly dis-

tributed, then H(e) ∼= blog2(e)c+1
2 .
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(Here and throughout this paper, ∼= is used to denote approximately equal
to.)

Thus the number of squarings required in computing me is blog2(e)c. The

expected number of multiplications by m to compute me is about blog2(e)c+1
2 −1.

Altogether, this is about 3
2blog2(e)c operations of either squaring or multiplica-

tion by m. Squaring and multiplication by m are operations of similar cost, as
in both cases, the algorithm is taking the product of two integers, both of which
are less than n. (They are less than n because reduction modulo n occurs after
each squaring or multiplication.)

For the 2048 bit keys mentioned earlier, this results in a total of about
3
2blog2(22048)c = 3072 multiplication/squaring operations. For each operation,
a reduction modulo n must also occur. Assuming that a modern computer can
perform a multiplication and reduction modulo n in a microsecond, then com-
puting me using the Repeated Square and Multiply Technique would take ap-
proximately 3 milliseconds. Much more acceptable than the many, many millen-
nia required when using the naive approach. The Repeated Square and Multiply Technique
does not require a significant amount of memory. In the algorithm presented
above, only mi, for the current step i, must be stored. Once mi+1 has been
determined, mi can be discarded.

Since the publication of RSA in 1977, many other techniques for speeding
up exponentiation have been developed.

Other Methods for Fast Exponentiation

The Repeated Square and Multiply Technique can be extended into a family
of techniques for modular exponentiation known as M-ary Techniques. I outline
M-ary Techniques below.

Suppose one wishes to compute xe % (n). A power of two, M , is first chosen.
The exponent e is then represented in base M : e = (a1a2...ak)M . The set S
(shown below) is precomputed and stored for future reference:

S = {x % (n), x2 % (n), x3 % (n), ... xM−1 % (n) }

The algorithm then continues in a manner similar to the Repeated Square
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and Multiply Technique. For step 1, it initializes x1 as xa1 . For steps 1 < i ≤ k,
it lets xi = (xi−1)M ∗ xai . Multiplication by xai can be quickly performed by
looking up the value for xai in the stored set S.

A detailed outline of theM -ary Techniques is available in the paper Efficient Modular
Exponentiation Methods for RSA(Güner et al (2017)).17 There, authors also
provided a detailed description of the Modified M-ary Technique. When us-
ing the Modified M-ary Technique, during the precomputation phase, only the
odd powers of x are precomputed to form the set S. When an even power of
x is needed, the algorithm instead squares the appropriate stored odd power of
x. Güner’s paper presented a theoretical comparison of the M-ary technique, the
Modified M-ary Technique, and the Repeated Square and Multiply Technique. The
authors also implemented algorithms using each of these techniques, and com-
pared the run-times of those implementations using a range of different RSA
modulus sizes. In their implementations, for all moduli, the encryption expo-
nent, e, was fixed at 65537. The decryption power, d, of course was dependent
on e and the modulus. In all cases, the decryption power d was larger than the
encryption power, e. As will be shown in the next section of this paper, the
RSA decryption exponent, d, is almost always much larger than the encryption
exponent, e.

The M-ary Techniques did not appear to provide significant improvements
over the Repeated Square and Multiply Technique during encryption. However,
during decryption (where larger exponents were used), an improvement of over
23% was found for each modulus size. In order to achieve the improvement,
values for M had to be strategically chosen. In their implementations, the
Modified M-ary Technique performed slightly better than the M-ary Technique.
Both the M-ary Techniques and the Modified M-ary Techniques require a small
amount of memory usage. This memory is used to store the precomputed sets.
A table of values comparing the speed of the Modified M-ary Technique to the
Repeated Square and Multiply Technique was provided in their paper. For con-
venience, the table is also present in Appendix III (Figure 2).

Another family of techniques for fast modular exponentiation are the
Sliding Window Techniques. Suppose again one has an integer x, and wishes to
compute xe % (n). The algorithm represents e using base 2, e = (a1a2...ak)2.
The k bits of e are then partitioned into smaller windows. The exact man-
ner in which these k bits are partitioned depend on the particulars of the
Sliding Window Technique used. Let | denote concatenation. Then e = (a1a2...ak)2 =
(w1|w2|...wi)2 where each wi is a string of bits. Let zi represent the number
of bits in e which are to the right of the rightmost bit of the window wi. The
algorithm can then compute xe = Πt=i

t=1(xwt)2
zt

. For further clarity, I present
an example below.
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Suppose ep = (1100100)2. One possible way to partition ep is: ep = (11|00|1|00)2.

In this case w1 = (11)2, w2 = (00)2, w3 = (1)2, and w4 = (00)2. While
z1 = 5, z2 = 3, z3 = 2, and z4 = 0.

One can then compute:

(xw1)2
z1 ∗ (xw2)2

z2 ∗ (xw3)2
z3 ∗ (xw4)2

z4
=

(x(11)2)(100000)2 ∗ (x(00)2)(1000)2 ∗ (x(1)2)(100)2 ∗ (x(00)2)(1)2 =

x(1100000)2 ∗ x(0)2 ∗ x(100)2 ∗ x(0)2 = x(1100100)2

One benefit of the Sliding Window Techniques can be seen through this ex-
ample. Any windows which contains only the digit 0 need not be computed.
This is true because for any x ∈ Z+ it is the case that (x0)2

zi
= 1.

When using Sliding Window methods, precomputation can be used to store
xi for all 2 ≤ i < 2t where t is the bitlength of the largest window. This reduces
the problem of computing xwi to looking up a value in the precomputed set.
However, for large windows this requires a significant amount of precomputa-
tion. Storing larger precomputed sets also requires the use of more memory.

In some Sliding Window Techniques, variable window lengths (which were
used in my example) are not permitted. The paper Efficient Pre-Processing for Large
Window-Based Modular Exponentiation Using Ant Colony (Nedjah 2005) gives
a detailed description of different types of Sliding Window methods.18 In the
paper, author Nedjah notes that Sliding Window Techniques can be further op-
timized by strategically selecting what values to precompute. She developed
an algorithm that uses an artificial intelligence system to minimize the number
of operations required during precomputation. When implemented, she found
that her system (the ant system) performed favorably to M-ary Techniques.

Efficient modular exponentiation remains a very active research topic. As
such, my discussion of the topic has certainly not been exhaustive - I have
presented only the foundational ideas behind efficient modular exponentiation.
Another way of improving the performance of RSA implementations is to strate-
gically select the keys used to initialize the RSA system.

Key Selection for Fast Encryption in RSA
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During the initialization phase of RSA, there is some freedom in selecting
the public key (e, n). Since 2015, NIST (the National Institute of Standards and
Technology) has recommended a minimum bit length of 2048 for the modulus n
when implementing RSA.7 The decryption key, d must also be reasonably large
- if d were too small, then the system would be vulnerable to brute force attacks.
In order for the system to be secure, d should have a bit length of at least 0.3t
where t is the bit length of the modulus n.22 In practice, the bit length of d is
often very close to the bit length of n. However, the public exponent, e, need
not be particularly large. Needless to say, by choosing small values for e, one
can expedite the process of computing me. The most commonly chosen value
for e is 216 + 1; a key of only 17 bits.21

Due to the difference between the size of e and the size of d, there is a differ-
ence between the speed of encryption and the speed of decryption when using
RSA. RSA encryption tends to be significantly faster than RSA decryption.
In fact, RSA encryption is, in almost all practical cases, faster than encryp-
tion using any other public key scheme.20 In addition to selecting small values
for e, values for e can be selected such that their Hamming weight, H(e), is
low. This is why values of the form ep = 2k + 1 are commonly used. For
such values, H(ep) = 2. Recall from my analysis that H(e) − 1 determines
the number of multiplications required when computing me when using the
Repeated Square and Multiply Technique.

The Chinese Remainder Theorem for Fast Decryption in RSA

Selection of the decryption key, d, does not allow for the same freedoms as
does the selection of the encryption key e. d must be kept secret, and thus
cannot be too small. d also cannot be selected based on a predictable pattern.
Further, d depends on the selection of e and n, since it must be the case that
ed ≡ 1 mod (p−1)(q−1).∗ However, the primes p and q that are used to create
n do not need to be kept secret from those who hold the private key d. As
such, the values p and q can be used to help speedup the process of decryp-
tion. Suppose an RSA system is initialized with valid parameters, and that one
wishes to compute xd % (n). Further, suppose that the values p and q that were
used to construct the system are known. I will describe an alternative method
for computing xd % (n) which makes use of the Chinese Remainder Theorem
. I will then show that this alternative method is typically less costly than the
conventional approach to computing xd % (n).

∗(It is sufficient that ed ≡ 1 mod lcm((p − 1), (q − 1)) where lcm(x, y) rep-
resents the lowest common multiple of x and y. Some outlines of RSA however
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specify that ed ≡ 1 mod (p− 1)(q− 1); I have used this as the convention in my
paper.)

I begin by defining some variables:

xp = x % (p)
xq = x % (q)
dp = d % (p− 1)
dq = d % (q − 1)

yp = x
dp
p % (p)

yq = x
dq
q % (q)

cp is the unique value such that qcp ≡ 1 mod p and cp ∈ {1, 2, ..., p− 1}
cq is the unique value such that pcq ≡ 1 mod q and cq ∈ {1, 2, ..., q − 1}

The values cp and cq can be computed using the Extended Euclidean Algorithm.
They are guaranteed to exist because gcf(p, q) = 1. Further, they are guaran-
teed uniqueness by Theorem A in Appendix I.

Then let xpq = [(qcp)yp + (pcq)yq] % (n).

I aim to prove that xpq = xd % (n).

Proof of the Correctness of Chinese Remainder Theorem Exponentiation:

I will first show that xpq ≡ xd mod p. Using Euler’s Theorem:

xpq ≡ (qcp)yp + (pcq)yq ≡ qcpyp + (0 ∗ cq)yq ≡ (qcp)yp ≡

1yp ≡ x
dp
p ≡ xdp ≡ xd+k(p−1) ≡ xd ∗ (xp−1)k ≡ xd(1)k ≡ xd mod p

Thus xpq ≡ xd mod p

A symmetric argument shows that xpq ≡ xd mod q

By Theorem C (in Appendix I), since gcf(p, q) = 1, it follows that xpq ≡ xd

mod pq. Since xpq is a member of the canonical complete residue system modulo
n and xpq ≡ xd mod n, it must be the case that xpq = xd % (n). Thus xpq is the
same as the value found using the conventional approach to computing xd % (n).

Q.E.D.

Making use of the Chinese Remainder Theorem (CRT) gives the correct re-
sult for xd % (n), but is it any faster than conventional modular exponentiation?
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I will make some approximations in order to compare the cost of decryption
using the CRT technique to the cost of decryption without using the CRT tech-
nique.

In all RSA implementations conforming to the first version of the
Public-Key Cryptography Standards (PKCS #1), d is chosen such that d ≤ n.
Typically, d is of similar bit-length to n. The reason this is true can be seen by
analyzing the way RSA is implemented. By construction, ed = 1+k(p−1)(q−1).
Often k = 1; key selections such that k = 1 allow for faster computation than
comparable selections where k > 1. If one assumes k = 1, then it follows that:

ed = 1 + (p− 1)(q − 1) ∼= 1 + pq = 1 + n ∼= n

Since ed ∼= n, it follows that:

log2(e) + log2(d) = log2(ed) ∼= log2(n)

As noted in the previous section, e is typically chosen to be of small bit-length.
Hence log2(e) is negligible and:

log2(d) ∼= log2(n)

Using the Repeated Square and Multiply Technique, my analysis found that the
number of squaring/multiplication operations that must be performed in com-
puting xd for some exponent d was approximately 3

2 log2(d). So if one com-
putes xd without the use of the CRT technique, the expected number of squar-
ing/multiplications is about:

3
2 log2(d) ∼= 3

2 log2(n)

How does this compare to computing xd while using the CRT technique?
The steps required to calculate xp, xq, dp and dq are relatively trivial - they
each require a singular modular reduction. Computing cq and cp does not take
a significant amount of time either - each requires a single application of the
Extended Euclidean Algorithm. The bulk of the computation that must be done
using the CRT technique takes place when computing yp and yq:

yp = x
dp
p % (p)

yq = x
dq
q % (q)

Note that dp < p and dq < q by construction. Here I again use the approxi-
mate expression determined during the analysis of the Repeated Square and Multiply
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Technique. The number of multiplications/squarings required to compute yp is
approximately 3

2 log2(dp) while the number of squarings/multiplications used to
compute yq is approximately 3

2 log2(dq). Thus to compute both yq and yp, the
expected number of operations is:

3
2 log2(dq) + 3

2 log2(dp) = 3
2 log2(dqdp)

Note that

3
2 log2(dqdp) <

3
2 log2(pq) = 3

2 log2(n)

Thus one can expect to perform no more than about 3
2 log2(n) operations

of squaring or multiplication when using the CRT technique. 3
2 log2(n) is the

same number of operations I approximated would be needed without using the
CRT technique. However, note that xp and dp are bound above by p, and xq
and dq are bound above by q. As such, although the number of multiplica-
tion/squaring operations are similar when using either technique, the sizes of
the integers being dealt with are smaller when using the CRT technique. How
much of a benefit does one expect to gain from dealing with smaller integers?

When p and q are chosen during initialization, they are typically chosen to
be of similar size. One reason for this choice is that when p and q are of sim-
ilar size, the CRT exponentiation method provides the greatest speed benefit.
Another reason for the choice is that it avoids having an unnecessarily small
factor of n. When n has a small factor, n is vulnerable to certain factorization
techniques (such as the Elliptic Curve Factorization Method).23 If p and q are
chosen to be of similar size, it is reasonable to assume that if n is a k bit inte-
ger, then p and q are each approximately k

2 bit integers. So by using the CRT
technique, one bounds the size of integers they’re working with to be about half
the bit length of the integers they would be working with if they did not use the
CRT technique. The complexity of multiplication decreases quadratically with
bit length.24 It follows that operating with integers bound by k

2 bits rather than
integers bound by k bits results in decryption using the CRT technique being
up to 4 times as fast as decryption without the use of the CRT technique.

This concludes my analysis of encryption and decryption using RSA. I will
now further explore how RSA parameters can be initialized.

RSA Initialization

Recall that when initializing an RSA protocol, the protocol must find two
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distinct primes, p and q. If p and q are chosen to be of similar size, then for a k
bit modulus, the protocol must find two primes, each of which is approximately
k
2 bits in length. One method for finding these k

2 bit primes (as outlined in the

Handbook of Applied Cryptography25) involves selecting random odd k
2 bit inte-

gers, and then performing primality tests on those integers. Any integers that
are determined to be composite are discarded. Integers that are determined to
be very likely prime are used in the initialization. The process of generating
random integers itself is a surprisingly nuanced problem.

Computer functions are by definition deterministic - so when a standard
computer function is used to generate ”random” numbers, that function does so
in a predictable pattern. When it comes to cryptographic keys, it is important
that the randomly generated numbers not be predictable. Predictably generated
keys are not secure. To address the problem of generating unpredictable random
integers, cryptographers often draw from hard to predict real-world phenomena.
Data from chaotic real-world systems can be tracked and translated into seeds
that are then used to generate strings of random integers. For example, the
movement of fluids inside a lava lamp is sometimes monitored and recorded.
The data gathered from the motion of those fluids can then be transformed
into numeric sequences, which are in turn used to generate the desired random
integers.10 Since the movement of the fluids in the lava lamp are nearly impos-
sible to predict, it’s also nearly impossible to replicate the seed used to generate
random integers. This helps to ensure the security of the cryptosystem. Once a
method for obtaining random k

2 bit odd integers is in place, the protocol must
also determine whether or not those integers are prime. Below I present the
Miller-Rabin Composite Criteria. This criteria plays an important role in one
of the most frequently used primality tests.

The Miller-Rabin Composite Criteria:

Let b be any odd integer greater than 1. Denote b − 1 = 2ur where r is
the greatest odd factor of b− 1.

If there exists an integer a that satisfies all of the following conditions,
then b is not prime:

Condition 1: ar 6≡ 1 mod b.

Condition 2: ar2
j 6≡ −1 mod b for all j ∈ {0, 1, ..., u− 1}.

Condition 3: b does not divide a.
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Proof of the Miller-Rabin Composite Criteria:

Assume b is prime and that conditions 2 and 3 above hold. I will show that
under these assumptions, condition 1 must not hold.

Note that by assumption b is a prime and, since b does not divide a, it fol-
lows that gcf(a, b) = 1. Thus by Euler’s Theorem, it can be argued that:

ab−1 = ar2
u ≡ 1 mod b.

Now suppose that ar2
j+1 ≡ 1 mod b for some 0 ≤ j < u. I will show that

if this is the case, then it must also be the case that ar2
j ≡ 1 mod b:

By assumption b is prime. Thus by Theorem E in Appendix I:

a2r
j+1

= (ar2
j

)2 ≡ 1 mod b =⇒ either ar2
j ≡ 1 mod b or ar2

j ≡ −1 mod b.

It is assumed that condition 2 of the Miller-Rabin Composite Criteria holds,
hence ar2

j 6≡ −1 mod b.

Thus it must be the case that if ar2
j+1 ≡ 1 mod b, then ar2

j ≡ 1 mod b.

Since ar2
u ≡ 1 mod b, the above result proves that ∀j ∈ {0, 1, 2, ..., u − 1}

it must be the case that ar2
j ≡ 1 mod b.

But then it must be the case that ar2
0

= ar ≡ 1 mod b. Hence condition 1
does not hold.

Thus if b is prime and conditions 2 and 3 of the Miller-Rabin Composite Criteria
hold, then condition 1 of the criteria must not hold. It follows that if conditions
1, 2, and 3 of the Miller-Rabin Composite Criteria concurrently hold, then b
must not be prime, and since b is an odd integer greater than 1, it follows that
in such a scenario, b must be composite.

Q.E.D.

For any positive odd integer b, if an integer, a, is found satisfying all three
conditions of the Miller-Rabin Composite Criteria, then b is certainly compos-
ite. However, even if there exists an integer a that does not satisfy all three
conditions, one cannot say for certain that b is prime. The integer, a, de-
scribed in the Miller-Rabin Composite Criteria is known as a base element. It
has been shown11 that if g distinct base elements are tested, each of which
satisfy 1 < a < b − 1, and all g of those base elements fail to prove that b is
composite, then the probability that b is composite is less than 2−2g. For larger
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values of b, the likelihood of b being a composite that is falsely identified as a
prime becomes even smaller.

When probabilistic primality algorithms are used to find candidate primes
for RSA, the tests are typically implemented as so that the likelihood of selecting
a ”false prime” is less than 2−80. This is virtually a guarantee that the chosen
integer is a prime - which is important, because the proof of the correctness of
RSA depended on p and q being prime. The Miller-Rabin Composite Criteria
can be used to determine whether or not a randomly generated k

2 bit integer
is likely prime. First, a security parameter s must be chosen. s indicates the
number of distinct base elements one must test before feeling confident that a
candidate prime, b, is indeed prime. As mentioned, in practice s is typically
chosen as so that the probability of falsely classifying b as prime is less than
2−80. If one uses the error bound mentioned above, letting s = 40 provides a
guarantee that the probability of falsely classifying an integer as prime is less
than 2−80. In practice, the integers to be selected for p and q in an RSA modu-
lus are large integers. As such, the error bound is even smaller, and one can opt
for security parameters much smaller than s = 40. A chart relating bit length of
b to the necessary security parameter when using the Miller-Rabin Composite
Criteria to test for primality can be found in Appendix III (Figure 3).

Below is an outline of an algorithm for a probabilistic primality test using
the Miller-Rabin Composite Criteria:
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Miller-Rabin Primality Test

Step 0: This algorithm takes in an odd integer b such that b > 1 and a security
parameter s ∈ Z+.

Step 1: The algorithm initializes the following variables and the set S:
r = b− 1
u = 0
t = 0
S = {}

Step 2:

While (r % (2) = 0): {
−Assign u = u+ 1.
−Assign r = r

2 . }

Step 3:

If (t < s): {
−Assign t = t+ 1.
−Generate a random integer a such that a ∈ {2, 3, ..., b− 2} but a 6∈ S.
−Assign S = S ∪ {a}.

−If (ar % (b) = 1){
−−Return to the beginning of Step 3. }

−If (ar % (b) 6= 1){
−−Assign i = 0.
−−Assign j0 = ar % (b) .

−−While (i < u) : {

− −−If (ji % (b) = b− 1): {
− −−−Return to the beginning of Step 3. }

− −−Else: {
− −−−Assign i = i+ 1.
−−−−Assign ji = (ji)

2.}}

− − If (i = u): {
− −−Terminate the entire algorithm and output: ”b is composite
−−−with a as a witness.” }}}

Terminate the algorithm and output: ”b is probably prime with a secu-
rity parameter of s.”
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This algorithm works by first computing u and r such that b−1 = 2ur where r
is the greatest odd factor of b− 1. It then generates random a ∈ {2, 3, ..., b− 2}
and uses each of those base elements, a, to test the Miller-Rabin Composite
Criteria. If a base element serves as a witness of b’s compositeness, the algo-
rithm terminates and tells the system that b is composite. If a fails to indicate
that b is composite, it is added to the set S. Once S has been filled with s
distinct base elements, the algorithm terminates and tells the system that b is
likely prime. Note that the random numbers used as witnesses need not be
generated in a cryptographically secure manner. The values for a are not used
as parts of a cryptographic key, only to test for primality. As such, one may
use simple predictable random number generation techniques to generate base
elements in this algorithm.

How computationally costly is the Miller-Rabin Primality Test? Step 1 is
of negligible cost - it simply involves initializing variables. Step 2 is not costly
either - it involves repeatedly dividing r by 2 until it is odd. Since r is initially
set at b − 1, the number of divisions by 2 is bound above by blog2(b)c. The
majority of the cost of the algorithm is incurred in step 3, when using base
elements to test the primality of b.

For each base element a, it is possible that the algorithm will need to com-
pute ar2

j

% (b) for 0 ≤ j < u. For most base elements, not all values of j

must be tested - if ar2
j

% (b) = −1 for even one value of j, then the program
knows that a cannot serve as a witness of b’s compositeness. Shoof (2004)19

proves testing an individual base element a, requires no more than (log2(b))3

elementary bitwise operations. It follows that for a security parameter s, the
complexity of the algorithm (described using asymptotic complexity notation)
is O(s(log2(b))3). So if one wants to initialize an RSA protocol with a k bit
modulus, what is the ultimate cost of initialization?

By the Prime Number Theorem26, it is known that for a given natural num-
ber, n, the probability that a randomly selected natural number no greater than
n is prime is approximately 1

ln(n) . Since the algorithm restricts the randomly

generated integers to odd numbers, the probability that a random odd integer,
n, is prime is approximately 2

ln(n) . Thus, the expected number of k2 bit integers

that must be tested in order to find a k
2 bit prime is approximately ln(2

k
2 )

2 . As
determined above, the cost of performing a primality test on each of these candi-
date primes, expressed in asymptotic complexity notation, is O(s(log2(2

k
2 ))3).

Further, the process of finding a k
2 bit prime must be done twice, since the

protocol needs to determine both a p value and a q value. By compiling these
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findings, I have expressed the expected cost of initializing an RSA system using
asymptotic complexity notation (below, e represents Euler’s number):

2 ∗ ln(2
k
2 )

2 ∗O(s(log2(2
k
2 ))3) =

log2(2
k
2 )

log2(e)
∗O(s(k2 )3) =

( 1
2log2(e)

) ∗ k ∗O( 1
8 ∗ (sk3)) =

c1k ∗O(c2(sk3)) = O(sk4)

(Properties of complexity analysis are used to simplify the expression in the
last line. These properties are proven in Introduction to Algorithms2.)

This gives an approximate bound on the number of bitwise operations that
must be performed in order to find appropriate primes for a k bit RSA mod-
ulus using a security parameter of s: O(sk4). Once the values p and q have
been found, the process of determining e and d is usually quite simple. As
noted, e is typically chosen to be of small size and such that H(e) is rela-
tively small. Note that the most common choice for e, 65537 is itself a prime
number. This means the likelihood that gcf(65537, (p − 1)(q − 1)) = 1 is
very high. In fact gcf(65537, (p − 1)(q − 1)) 6= 1 only if 65537|(p − 1)(q −
1); this is only expected to be the case about 1

65537 of the time. In such
cases, other values for e must be used. Once e, p, and q are determined, the
Extended Euclidean Algorithm can be used to determine the decryption expo-
nent, d. The number of elementary bitwise operations that must be performed
when using the Extended Euclidean Algorithm to determine d is O(k) where k
is the bit length of the RSA modulus.29

I have shown how RSA can be initialized and how encryption and decryption
occurs. There is one more important aspect of RSA that arises in real world
applications.

Padding in RSA

The basic RSA protocol provides a good level of security - if a malicious
party (who does not hold the private key) intercepts an encrypted message, it’s
extremely difficult for that party to decrypt the message. However, there are a
number of weaknesses in the protocol that have not yet been addressed:
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Encryption using RSA alone is referred to as malleable - which means that
it is easy for attackers to transform one ciphertext message into another. To
illustrate how this is a problem when using RSA alone, consider an example:

Suppose an honest party, Bob, sets up an RSA protocol using the public key
(e, n) and the private key d. He publicly broadcasts (e, n). Now suppose another
honest user, Alice, wishes to send Bob the message x. Alice would begin by en-
crypting her message, x, into a ciphertext (we’ll call her ciphertext s) using the
encryption function: s = xe % (n). Suppose a malicious party, Trouble, then
intercepts Alice’s encrypted message, s. Using the public key that’s available
to him, Trouble could compute pes % (n). Trouble could then, posing as Alice,
relay this new message to Bob. When Bob uses his decryption function on the
compromised ciphertext, he would find:

D(pes%(n)) = (pes)d % (n) = px

Trouble would have effectively transformed Alice’s message into something else,
without ever having needed to decrypt her message. For obvious reasons, this
is an undesirable trait for a cryptosystem.

Other issues involving using the RSA protocol alone include:

-The plaintext values 0, 1,−1 always yield a ciphertext of 0, 1,−1. This is true
because for any positive integer e chosen as the encryption power, 0e = 0, 1e = 1,
and (−1)e ∈ {1,−1}.

-When small plaintext values and a small public exponent are used, cipher-
text may not be secure. For example, suppose one has a 256 bit modulus, n, a
plaintext value, m = 6 and that the public exponent is 17. Then the ciphertext
is c = 617 % (n) = 617. Hence anyone who intercepts the ciphertext can simply
compute p = 17

√
c and find the associated plaintext value.

-RSA alone is deterministic: given a message x and a public key pair (e, n),
the ciphertext of x is always the same, it’s xe % (n). This can make it easy for
attackers to identify certain recurring messages or patterns.

A solution to these problems is the introduction of padding. Padding is the
process of embedding a random structure into plaintext before encrypting it.
When RSA is combined with an appropriate padding algorithm, the resulting
protocol is no longer malleable, short plaintext messages are no longer vul-
nerable, and the protocol is non-deterministic. There exist many algorithms for
padding which are compatible with RSA. In the document Public-Key Cryptography Standards
(PKCS)31, a specific method for padding, known as Optimal Asymmetric Encryption Padding
(OAEP) is recommended for use with RSA. Although the particulars of padding
algorithms vary, the general idea remains the same:
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Suppose an RSA protocol is set up using an n bit modulus, and by conven-
tion, users agree to use the protocol to encrypt messages of length no greater
than m bits, with m < n− 2. Let p be a plaintext message to be encrypted by
user Alice. If p is less than m bits, Alice begins by concatenating a string of 0’s
to the left side of p, creating a string p′ such that p′ has a bit length of exactly
m. Alice then generates a random n −m − 2 bit binary string, which will be
denoted R. She uses p′ and R to form a new n bit string as such:

B = 01|R|p′

(Here | denotes concatenation.)

B is Alice’s padded plaintext, which she can now encrypt using a regular RSA
scheme. Once the reciever, Bob, decrypts Alice’s ciphertext, c, he knows to
look at only the last m bits of the associated plaintext in order to recover Alices
original message. Although only the last m bits of the plaintext are meaningful,
the same does not hold for the ciphertext. A change to any bits in the cipher-
text may have an effect on the last m bits in the associated plaintext. If an
attacker were to intercept c = Be % (n) and replace it with c′ = sec % (n), the
plaintext message found from decrypting c′ would almost certainly not be sp.
Infact, the message would likely be entirely garbled and nonsensical. As such,
padded RSA no longer suffers from malleability. Since the random structure R
is generated each time Alice encrypts her message, identical plaintext messages
of the form p can result in many different ciphertexts. This resolves the problem
of determinism that exists in RSA.

Mathematical Vulnerabilities of Padded RSA

With the widespread use of RSA, it should come as no surprise that RSA is
regarded as a fairly secure cryptographic protocol. The most effective attacks
on systems using padded RSA tend to have more to do with the organization
responsible for using the RSA protocol than the protocol itself. My analysis,
however, will focus on the mathematical vulnerabilities of RSA.

The security of RSA is dependent on the difficulty of factoring large integers.
Suppose an RSA protocol were initialized with a public key, (e, n) with n = pq.
If a malicious party were able to factor n, they would obtain the primes, p and q.
They could then use the Extended Euclidean Algorithm, along with the public
exponent e, to find d such that ed ≡ 1 mod (p − 1)(q − 1). This shows that if
the public key is known and n can be factored, then the private key, d, can be
easily obtained.
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It is widely believed that factoring n is the most efficient mathematical at-
tack on RSA. This is known in literature as The RSA Assumption.32 As the
word assumption suggests, there is no known proof for this conjecture. For
large integers (integers greater than 10100 ∼= 2332 or approximately 332 bits),
the most efficient known general factoring technique is the general number field
sieve.33 The computational cost of the general number field sieve (as performed
on an integer of size n) is (as expressed in asymptotic complexity notation):

exp(( 3

√
64
9 + o(1))(ln(n))

1
3 (ln(ln(n)))

2
3 ))

Common Applications of RSA

Asymmetric protocols (including RSA) are typically used to exchange keys
for use in a symmetric protocol. Another important application of RSA is the
use of RSA to create digital signatures. Similar to a written signature, digital
signatures provide a way of proving that a message was created by a particular
individual. The RSA protocol can easily be adapted in order to create digital
signatures:

Suppose a user, Bob, had a message, m, that he wished to send to another
user, Alice. Further, suppose Bob wanted to digitally sign the message - to
provide a guarantee to Alice (and anyone else who receives the message) that
he was indeed responsible for writing that message. Bob would first generate a
public key (e, n) and a private key, d, using the RSA methods described above.

Bob would then compute s = md % (n). s would be the signature, and
would be sent with his message, m. Alice then receives the message m, and the
signature s. Using Bob’s public key, (e, n) Alice computes se % (n). If she finds
that se % (n) = m, she knows that the message was indeed sent by Bob. If se %
(n) 6= m, then the signature is not valid. I will first show that Bob’s signatures
will indeed be found to be valid:

Note that se = (md)e = med. As per the construction of RSA keys, med %
(n) = m. Hence Bob’s signature will be valid.

If Bob’s private key is kept private, forgery is extremely difficult. Given a
message m, a potential forger would need to compute md % (n). In order to
compute this, the forger must first determine the secret key, d. Since the secu-
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rity of the RSA protocol as a whole is predicated on attackers being unable to
determine d, forging RSA digital signatures is as difficult as breaking a conven-
tional RSA protocol.

The use of RSA to exchange keys for symmetric protocols is quite straight
forward. Suppose there exists a client, Alice, and a server, Bob. Bob has al-
ready published a public key available to everyone (including Alice). Alice will
begin by sending Bob a message, indicating she wishes to share a symmetric
key for communication. Bob will then reply, acknowledging Alice’s message and
digitally signing his acknowledgement. Due to the digital signature, Alice is
guaranteed that Bob is indeed who he claims to be. Alice can then take her
symmetric key, encrypt it using Bob’s public key, and send it to Bob. Bob will
use his private key to decrypt the symmetric key. The symmetric key should
then be held by Alice and Bob, and no-one else. At this point, Alice and Bob
can use the symmetric key for a symmetric cryptography protocol. In real-world
implementations, the details of this procedure vary - but the underlying idea
behind RSA key exchange is generally the same.

RSA remains a popular method for symmetric key exchange. However, there
exists another equally popular family of asymmetric protocols, designed explic-
itly for key exchange. The next section introduces the Diffie-Hellman Key Exchange.

The Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange is a method of securely exchanging keys
over a public channel. The DHKE was first published in 1976 by Whitfield
Diffie and Martin Hellman.27 The classical DHKE is an asymmetric protocol
that makes use of large prime numbers. Suppose two parties, Alice and Bob,
wish to generate and share a symmetric key with one another. The procedure
below outlines how this could be done using the Diffie-Hellman Key Exchange.
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The Classical Diffie-Hellman Key Exchange

Initialization:

1) Bob generates a random, large prime number, p.

2) Bob selects a random integer a ∈ {2, 3, ..., p− 2}.

3) p and a are published.

Key Exchange:

1) Bob generates a random integer b ∈ {2, 3, ..., p − 2}. He computes
s = ab % (p). He then broadcasts s.

2) Alice generates a random integer z ∈ {2, 3, ..., p − 2}. She computes
j = az % (p). She then broadcasts j.

3) Alice computes sz % (p). Note that sz ≡ (ab)z ≡ (abz) mod p. This
will be the shared key.

4) Bob computes jb % (p). Note that jb ≡ (az)b ≡ (abz) mod p. Hence
jb ≡ sz mod p thus jb % (p) = sz % (p). Thus Alice and Bob have the same
key.

Computational Cost of the Classical DHKE

Much of the analysis done on RSA can be applied when assessing the com-
putational complexity of the classical DHKE. The protocol involves:

1) Generating a large prime p:

Any method used to generate large primes for RSA can be used when gener-
ating a large prime for DHKE. In my analysis of the Miller-Rabin Primality Test,
I found that the asymptotic complexity of generating a k bit prime was O(sk4).
(Where s was the security parameter.) For security measures, modern DHKE
implementations typically use a p of at least 2048 bits.

2) Selecting random integers a, b, z ∈ {2, 3, ..., p− 2}:
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Aside from the difficulty of seeding random numbers to begin with, the com-
putational cost of finding a random integer in the range {2, 3, ..., p−2} does not
tend to be significant.

3) Computing ab % (p) and (ab)z % (p)

Again the analysis of the complexity of RSA comes in handy here. Meth-
ods for fast modular exponentation such as the Repeated Square and Multiply
Technique and the M-ary Techniques can be applied to classical DHKE. Re-
call that when using the Repeated Square and Multiply Technique, the expected
number of multiplications or squarings that must be performed to compute ab

% (p) was approximately 3
2blog2(b)c. Once one has computed ab % (p), they

can take that value and use it in order to find (ab)z % (p). This requires ap-
proximately 3

2blog2(z)c operations of either squaring or multiplying. Since b
and z are randomly selected integers from the range {2, 3, ..., p − 2}, it seems
reasonable to estimate that p

2
∼= b ∼= z. Then the expected number of multipli-

cation/squaring operations is approximately:

3
2blog2(b)c+ 3

2blog2(z)c ∼=

3
2 (log2(bz)) ∼= 3

2 (log2(p2
p
2 )) =

3log2(p)− 3.

Altogether, for the user Bob (responsible for finding p and a), when using a
k bit prime and s as a security parameter, the asymptotic computational cost
of the key exchange is about:

O(sk4) + 3log2(2k)− 3 = O(sk4) + 3k − 3 = O(sk4)

The Security of Classical DHKE

The algorithm presented above shows why both Bob and Alice end up with
the same symmetric key: (ab)z = abz = (az)b. But why is it that a malicious
third party listening in on their communication wouldn’t be able to easily de-
termine the key as well? Note that at no point does Bob broadcast b, nor Alice
broadcast z - instead they share only (ab) and (az) respectively. It turns out
that even while knowing a, p and ab % (p), it is not trivial to determine b. In
fact, the problem of determining b is so nontrivial (and significant to cryptog-
raphy), that it has a special name: the Discrete Logarithm Problem (DLP).
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Suppose G is a finite cylic group (written using multiplicative notation).
Let g be a generator of G and k be any element of G. The discrete logarithm
problem in G describes the problem of finding b ∈ Z+ such that gb = k.

For Bob’s selected prime, p, if an attacker were able to solve the DLP in
(Z/pZ)×, then that attacker could easily uncover Alice/Bob’s secret key as fol-
lows:

Let ab % (p) = c. The attacker could take the values, p, a, c, all of which
were broadcast, and find b such that ab = c in (Z/pZ)×. He could then take
Alice’s publicly broadcast value, az % (p) and compute (az)b % (p) - giving him
the secret key.

Fortunately, the DLP in (Z/pZ)× is considered to be an intractable problem.
It is believed that the DLP in (Z/pZ)× is of comparable difficulty to the prob-
lem of factoring large integers.34 However, there is no known proof that there
cannot exist a polynomial time algorithm that solves the DLP in (Z/pZ)×.

The Generalized Diffie-Hellman Key Exchange

The DHKE can be generalized into a method for key exchange using any
finite cycle group. The generalized DHKE is presented below (note that the
procedure is written using multiplicative notation for G. |G| denotes the order
of the finite group G):
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The Generalized Diffie-Hellman Key Exchange

Initialization:

1) A finite cyclic group, G, is chosen and publicly broadcast.

2) Bob finds g ∈ G such that g is a generator of G. Bob broadcasts
g.

Key Exchange:

1) Bob generates a random integer b ∈ {2, 3, ..., |G| − 1}. He computes
s = gb. He then broadcasts s.

2) Alice generates a random integer z ∈ {2, 3, ..., |G| − 1}. She computes
j = gz. She then broadcasts j.

3) Alice computes sz = (gb)z = gbz. This is the shared key.

4) Bob computes jb = (gz)b = gbz. This is the same shared key.

For any finite cyclic group G, Bob and Alice are guaranteed to end up with
the same shared key. However, not all choices for G provide adequate security.
The security of the generalized DHKE depends on the difficulty of the DLP
in the chosen group, G. For example, consider the DLP when G is chosen as
(Z/qZ)+ for some integer q. (Here (Z/qZ)+ describes the group formed by the
set of integers modulo q under the operation addition.)

In such a scenario, an attacker would be given a generator g and k ∈ G and
be asked to find b such that bg ≡ k mod q. Since g is a generator of (Z/qZ)+, it
is known that gcf(g, q) = 1, hence one could easily use the Extended Euclidean
Algorithm to find a valid value of b. Since the Extended Euclidean Algorithm
can be performed in polynomial time, the DLP in (Z/qZ)+ can be solved in
polynomial time. As such, performing the DHKE using (Z/qZ)+ would not be
secure. This illustrates the importance of selecting groups G such that the DLP
in G is hard.

Note that when G is a subgroup of (Z/pZ)× for some prime p, then the
generalized DHKE is precisely the classical DHKE. Another popular family of
groups used in the generalized DHKE are groups formed by points on elliptic
curves over finite fields. In the next section I will introduce these elliptic curve
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based groups.

Nonsingular Elliptic Curves over Fields

Let Fp be a finite field of characteristic p. A nonsingular elliptic curve over
Fp is the set of points (x, y) with x, y ∈ Fp satisfying the equation:

y2 = x3 + ax+ b where a, b are constants in Fp such that 4a3 + 27b2 6= 0.

The set of such points (x, y), combined with an identity element, O, (often
referred to as a point at infinity) can be used to form a group. The operation
used to define this group is as follows:

Point Addition on Nonsingular Elliptic Curves Over a Finite Field

Let E be a nonsingular elliptic curve over Fp defined by the equation
y2 = x3 + ax+ b. Let G = E ∪ {O}. Suppose P,Q ∈ E with P = (x1, y1) and
Q = (x2, y2). Then define P +Q as follows:

If P 6= Q and x2 − x1 = 0, then P +Q = O

If P = Q and y2 = 0, then P +Q = O

If neither of the above hold, then define s as follows:

s =

{
y2−y1
x2−x1

if P 6= Q
3x2

1+a
2y1

if P = Q

And let P +Q = (x3, y3) where

x3 = s2 − x1 − x2

y3 = s(x1 − x3)− y1

For any A ∈ G, let it be the case that O + A = A. Combining this
with the definition of point-addition, this defines the addition of any two
elements of G.

Using this definition of addition makesG a finite abelian group under addition.35

Any g ∈ G can be used as a generator to form < g >, a cyclic subgroup of G.
For certain classes of elliptic curves, G itself will be cyclic. As determined in the
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analysis of the generalized DHKE, any finite cyclic group can be used for key
exchange. When groups formed by elliptic curves over finite fields are used for
the DHKE, the protocol is known as Elliptic Curve Diffie-Hellman (ECDH).

Comparing ECDH and RSA

Although the generalized DHKE can be implemented using any finite cyclic
group, in order for the key exchange to be secure, the chosen group must have a
difficult DLP. Below I present Hasse’s Theorem (a proof is given by Washington
[2008] in Elliptic Curves: Number Theory and Cryptography35).

Hasse’s Theorem

Let |E| denote the number of distinct points on a nonsingular elliptic
curve over Fp. Then:

p+ 1− 2
√
p ≤ |E| ≤ p+ 1 + 2

√
p

Hasse’s Theorem can be used to determine the size of p (the character-
istic of the field) that will be needed in order to provide adequate security.
For strategically chosen elliptic curves, the best known algorithms for solv-
ing the DLP over the group of points on an elliptic curve are weaker than
the best known algorithms for solving the DLP in (Z/pZ)×. The authors of
On the Security of Elliptic Curve Cryptosystem Against Attacks with Special-Purpose Hardware
[2006] implemented specialized algorithms to solve the DLP over groups of points
on nonsingular elliptic curves.39 Specifically, they considered groups of points
formed on elliptic curves E, over Fp where p was an 163 bit prime. They found
that solving the DLP over such groups was thousands of times more difficult
than cracking an RSA implementation with a 1024 bit modulus. They showed
that elliptic curve cryptography can provide comparable security to RSA while
using significantly smaller key-sizes.

Due to the fact that ECC allows for smaller key sizes, initialization of sys-
tems using ECC tends to be faster than initializing an RSA protocol.40 However,
there remain some advantages of RSA. RSA has been time-tested and is com-
patible with many legacy systems. The details of the math and protocols behind
ECC are more complicated than the details of RSA. As such, it’s easier for mis-
takes to be made when implementing ECC algorithms. There are certain tasks
that RSA accomplishes more efficiently than ECC: verifying the validity of dig-
ital signatures, and encrypting data. Many experts believe that in the coming
decades, ECC will overtake RSA as the most popular method for public-key
cryptography.41
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Avenues for Further Research

Asymmetric cryptography is field with a great degree of both breadth and
depth. Many variants of popular systems have been explored and implemented.
RSA can be adapted into multi-power multiprime RSA, where the modulus used
is of the form Πi=n

i=0p
ri
i and each pi is a distinct prime. Algebraic groups can be

defined on curves other than nonsingular elliptic curves - such as hyperelliptic
curves. These groups can then be used to implement key exchanges and generate
digital signatures. There are many opportunities for further research into meth-
ods for fast modular exponentiation to expedite the process of encryption and
decryption using asymmetric systems. Any research made in primality testing
and integer factorization also has a significant effect on the field of asymmetric
cryptography.

Conclusion

Asymmetric cryptography is commonly used to solve the key distribution
problem and to create digital signatures. The validity of RSA, the most com-
mon method of asymmetric cryptography, can be proven using results from
elementary number theory. Despite the simplicity of RSA, there is a great deal
of nuance to its implementation. When performing modular exponentiation,
using only straightforward multiplication is unfeasible. Efficiency gains can also
be found through the strategic selection of parameters when initializing RSA.
Specifically, the encryption key should be relatively small number with a low
Hamming weight. Generating random large prime numbers for RSA initializa-
tion is a nontrivial task. In practice, nondeterministic primality tests are used
to find integers that are very likely (but not certainly) prime.

My exploration of the generalized DHKE showed how any finite cyclic group
can be used in a key exchange protocol. Although any such group will guar-
antee that a key is successfully exchanged, only groups with a difficult DLP
provide adequate security. The generalized DHKE is most often performed over
either (Z/pZ)× or a group formed by a nonsingular elliptic curve over Fp. Given
similar key sizes, ECC provides a greater degree of security than RSA or the
classical DHKE. However, there remain some advantages to RSA - RSA is a
time-tested protocol, while ECC is relatively new. Encryption of data and the
verification of digital signatures can be performed faster when using RSA than
it can with any other common asymmetric cryptosystem.
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Appendix I: Auxiliary Proofs

Theorem A: Let n be a positive integer. Let a1 and a2 be integers such
that a1 ≡ a2 mod n and 0 ≤ a1, a2 < n. Then it must be the case that a1 = a2.

Proof: Suppose it were the case that a1 ≡ a2 mod n and 0 ≤ a1, a2 < n
but a1 6= a2. Without loss of generality one can assume a1 > a2. By the defini-
tion of modular congruence: a1 ≡ a2 mod n =⇒ a1−a2 = kn for some integer
k.

Since a1 > a2, it is known that (a1 − a2) > 0 thus kn = (a1 − a2) > 0,
and, since n > 0, it follows that k > 0.

Since k is an integer and k > 0, it follows that k ≥ 1. Hence, kn ≥ n. Then it
must be the case that (a1 − a2) = kn ≥ n.

But a1 < n and a2 ≥ 0 , therefore (a1 − a2) ≤ a1 < n. So if a1 6= a2, it
would have to be the case that n > (a1 − a2) ≥ n =⇒ n > n. Clearly this is
a contradiction, thus it cannot be the case that a1 6= a2. It follows that for any
positive integers n, a1, a2, if it is the case that 0 ≤ a1, a2 < n and a1 ≡ a2 mod
n, then it must also be the case that a1 = a2.

Q.E.D.

Theorem B: Let n be a positive integer. Let a, b, x, y be integers such that
a ≡ x mod n and b ≡ y mod n. Then a ∗ b ≡ x ∗ y mod n.

Proof: Since a ≡ x mod n, it must be true that a = kn + x for some inte-
ger k. Similarly, since b ≡ y mod n, it is the case that b = jn + y for some
integer j. Thus:

ab = (kn+x)(jn+ y) = (kjn) ∗n+ (jx)n+ (ky)n+xy = n(kjn+ jx+ky) +xy

Since (kjn + jx + ky) is an integer, ab = tn + xy for some integer t. Thus
ab ≡ xy mod n.

Q.E.D.

Theorem C: Let x, y be positive integers such that gcf(x, y) = 1. Suppose
a ≡ b mod x and a ≡ b mod y. Then a ≡ b mod xy.
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Proof:

By definition, a ≡ b mod x implies a = jx+ b for some integer j.

Similarly, a ≡ b mod y =⇒ a = ky + b for some integer k.

Thus a = ky + b = a = jx+ b =⇒ ky = jx

Since ky = jx, and x clearly divides jx, it must also be the case that x di-
vides ky. Since gcf(x, y) = 1, if x divides ky then it must be the case that x
divides k. Thus k = tx for some integer t.

It follows that a = ky + b = txy + b =⇒ a − b = t(xy) and a ≡ b mod
xy.

Q.E.D.

Theorem D: Let a, b, n, e be integers with n, e > 0. If a ≡ b mod n then
ae ≡ be mod n:

Proof: This will be proven by induction on e.

BASIS CASE (e = 1): Clearly if a ≡ b mod n then a1 ≡ b1 mod n.

INDUCTION: Assume ae−1 ≡ be−1. Then:

ae = a ∗ ae−1

Using the premise a ≡ b mod n, as well as the inductive assumption ae−1 ≡ be−1
mod n, and the results from Theorem B:

a(ae−1) ≡ b(be−1) mod n

And clearly be ≡ b(be−1) mod n.

Thus the inductive assumption holds, and ae ≡ be mod n.

Q.E.D.

Theorem E: Let p be a prime and a be any integer such that a2 ≡ 1 mod
p. Then it is either the case that a ≡ 1 mod p or a ≡ −1 mod p:

Proof: Suppose a2 ≡ 1 mod p. Then:

a2 − 1 ≡ 0 mod p =⇒
(a− 1)(a+ 1) ≡ 0 mod p =⇒
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(a− 1)(a+ 1) = kp for some integer k =⇒
p|(a− 1) or p|(a+ 1) =⇒
It is either the case that (a − 1) ≡ 0 mod p and a ≡ 1 mod p; or it is the case
that (a+ 1) ≡ 0 mod p and a ≡ −1 mod p.

Q.E.D.

Appendix II: Glossary of Terms

Asymmetric cryptography: Asymmetric cryptography is a family of crypto-
graphic methods that use pairs of keys. Each pair consists of a public key (which
is broadcast to everyone) and a private key (which should only be known by a
select few). Asymmetric cryptography is also known as public key cryptogra-
phy. Cryptographic protocols that make use of asymmetric methods are often
referred to as public key cryptosystems.

Asymptotic complexity notation: Asymptotic complexity notation is a way of
comparing the cost of different algorithms on arbitrarily large inputs. The spe-
cific meaning of some common asymptotic complexity notation is shown below2:

g(n) = Θ(f(n))←→ ∃c1, c2, n0 ∈ R+ such that 0 ≤ c1f(n) ≤ g(n) ≤ c2f(n) for all n ≥ n0

g(n) = O(f(n))←→ ∃c1, n0 ∈ R+ such that 0 ≤ g(n) ≤ c1f(n) for all n ≥ n0

Asymptotic complexity is often used to compare a particular cost function to
a class of functions. Suppose g(n) = O(p(n)) where p(n) is some polynomial
function. Then there exists some polynomial p(n) with real valued coefficients
such that g(n) = O(p(n)).

Base element in Miller-Rabin primality testing: A base element is an integer
that plays a role in Miller-Rabin probabilistic primality tests. Suppose one has
an odd integer p and wishes to determine whether or not p is likely prime. In
doing so, one must select integers a such that a ∈ {2, 3, ..., p−2} and test to see
whether or not a serves as a witness of p’s compositeness. An integer selected
as a is referred to as a base element.

Canonical complete residue system modulo n: Let n be a positive integer. Then
the set {0, 1, 2, ..., n−1} is known as the canonical complete residue system mod-
ulo n.

Chinese Remainder Theorem: The Chinese Remainder Theorem states that if
one knows the remainders of the Euclidean division of an integer n by several
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integers, then one can determine uniquely the remainder of the division of n by
the product of these integers, under the condition that the divisors are pairwise
coprime (no two divisors share a common factor other than 1).

Ciphertext: Plaintext messages contain the original data intended to be com-
municated along a secure channel. When encryption occurs, a plaintext message
is transformed into an associated ciphertext. When decryption occurs, the ci-
phertext is transformed back into the plaintext message as so that the receiver
can interpret it.

Diffie-Hellman Key Exchange (DHKE): The Diffie-Hellman key exchange is a
method of securely exchanging cryptographic keys over a public channel. The
Diffie-Hellman key exchange, named after Whitfield Diffie and Martin Hellman,
was one of the first public-key protocols.27 Although the Diffie-Hellman key
exchange was originally implemented using the multiplicative group of integers
modulo a prime, the process has since been generalized. The generalized version
of the Diffie-Hellman key exchange can be implemented using any finite cyclic
group.

Digital signatures: A digital signature is a mathematical scheme for verifying
the authenticity of digital messages or documents. A valid digital signature,
where the prerequisites are satisfied, gives a recipient very strong reason to be-
lieve that the message was created by a known sender, and that the message
was not altered in transit.30

Discrete Logarithm Problem in G: Let G be a finite cyclic group (written using
multiplicative notation.) Let g be a generator of G and let k be any element
of G. The discrete logarithm problem in G describes the problem of finding
b ∈ Z+ such that gb = k.

Elliptic-Curve Cryptography (ECC): Elliptic-curve cryptography is an approach
to public key cryptography that is based on the algebraic structure of elliptic
curves over finite fields.28

Elliptic Curve Factorization Method: An efficient method for finding small fac-
tors of a positive integer. This method uses elliptic curves. It is considered the
best modern algorithm for finding divisors that do not exceed 50 to 60 digits.13

Euler Totient Function: The Euler totient function is a function that takes pos-
itive integers as its input. It is defined as follows:

φ(p) = |S| where S = {n|n ∈ Z+;n ≤ p; gcf(p, n) = 1} and |S| denotes the
cardinality of S.

Hamming weight: The Hamming weight of a string is the number of symbols
that are different from the zero-symbol of the alphabet used. If x is a binary
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string, then the hamming weight of x is equal to the number of 1’s in x.

Key distribution problem: When symmetric key algorithms are used in cryp-
tography, a secret key must be shared between all parties communicating. The
problem of securely sharing that secret key is known as the key distribution
problem.

Malleable cryptosystems: A cryptosystem is referred to as malleable if there
is an easy way for an attacker to transform a ciphertext, c into another valid
ciphertext, c′ with a different meaning.

M-ary Techniques for modular exponentiation: M-ary techniques are a family
of techniques used to expedite modular exponentiation. In order to compute xe

% (n), this family of techniques represents e using a base M system, where M
is some power of 2.

Padding in cryptography: Padding describes a process by which random struc-
tures are embedded into plaintext before it is encrypted. This provides addi-
tional security, and, in some protocols, standardizes message length.

Plaintext: Plaintext messages contain the original data intended to be com-
municated along a channel. When encryption occurs, a plaintext message is
transformed into an associated ciphertext. When decryption occurs, the cipher-
text is transformed back into the plaintext message as so that the receiver can
interpret it.

Public key Cryptography Standards: A family of standards published by RSA
Laboratories. 8 It provides the basic definitions of and recommendations for
implementing the RSA algorithm for public key cryptography. It defines the
mathematical properties of public and private keys, primitive operations for
encryption and signatures, secure cryptographic schemes, and related syntax
representations.

Public key cryptosystem: When asymmetric methods are used to develop a
system for encryption and decryption, that system is known as a public key
cryptosystem.

Repeated Square and Multiply Technique: A technique for efficiently comput-
ing me % (n) for some m, e, n ∈ Z+. If e is a randomly selected positive integer,
the number of squaring or multiplication operations expected to be performed
in order to compute me % (n) is approximately 3

2 log2(e).

Rivest-Shamir-Adleman (RSA): An asymmetric cryptographic scheme intro-
duced in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adleman. The
security of RSA relies on the difficulty of factoring large integers.16
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Symmetric key cryptography: Symmetric key algorithms are algorithms for cryp-
tography that use the same cryptographic keys for both the encryption of plain-
text and the decryption of ciphertext. The keys may be exactly identical, or
there may be a simple transformation used to go between the two keys.

Sliding Window Techniques: A family of techniques used for efficient modular
exponentiation. When computing xe % (n), sliding window techniques involve
representing e in binary. Supposed e is a k bit integer. The k bits representing
e will be partitioned into sections and computations will be performed on each
of those sections independently. The results of those computations will be com-
bined in order to compute xe % (n).

The RSA Assumption: The assumption that if given an RSA public key, (e, n)
and an RSA ciphertext c, then the problem of finding the plaintext p that is
associated with the ciphertext c is at least as hard as factoring the modulus n.

Appendix III: Tables and Charts
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Figure 1: Taken from Cryptanalytic Attacks on RSA (2008)
37

. Records for the
largest RSA modulus factored between the years 1964 and 2005. The first
column indicates the year the modulus was factored, the second column indicates
the decimal length of the modulus, and the third column indicates the bit length
of the modulus. Each modulus listed here is of the form p∗ q, where p and q are
distinct primes. For each modulus, the prime factors of that modulus are each
approximately half the bit length of the modulus.
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Figure 2: Taken from Efficient Modular Exponentiation Methods for RSA17. m
represents the size of the base chosen for the M -ary method. m = 2 corresponds
to the repeated square and multiply method.
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Figure 3: Taken from Understanding Cryptography12. A chart relating the
bitlength of a candidate prime, p̃ to the security parameter s needed to en-
sure that the probability that p̃ is falsely classified as prime is less than 2−80
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